Long-Acting RNAi Therapy for Atherosclerosis and Insulin Resistance
长效 RNAi 治疗动脉粥样硬化和胰岛素抵抗
基本信息
- 批准号:10277786
- 负责人:
- 金额:$ 71.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylgalactosamineAddressApoptoticAreaArterial Fatty StreakAtherosclerosisBiocompatible MaterialsBloodBlood CirculationBlood coagulationCalciumCalmodulinCardiometabolic DiseaseCategoriesCause of DeathCellsCessation of lifeChemicalsChemistryChronic DiseaseClinicalComplexCoronary heart diseaseDangerousnessDevelopmentDiseaseDoseDrug KineticsEngineeringFDA approvedFormulationFrequenciesGalactoseGene SilencingGenerationsGenesGenetic DiseasesGoalsHalf-LifeHepatocyteHumanImpairmentIn VitroIndividualInflammationInjectionsInsulin ResistanceLeadLesionLigandsLipidsLiverMediatingMediator of activation proteinModelingModificationMusMyocardial InfarctionNanotechnologyNatureNecrosisNon-Insulin-Dependent Diabetes MellitusObesityOutcomePeptidesPhagocytosisPharmaceutical PreparationsPhosphotransferasesProcessRNA InterferenceRNA Interference TherapyRNA deliveryResolutionSafetyScienceSeriesSmall Interfering RNASurfaceSystemTechnologyTestingTherapeuticThickWorkbaseclinical developmenteffective therapyefficacy evaluationethylene glycolimprovedin vivoin vivo Modellead candidatelipid nanoparticlemacrophagemortalitymouse modelnanoparticlenovelobesity treatmentsuccesssurface coatingtherapeutic RNAtherapeutic targetuptakewestern diet
项目摘要
ABSTRACT
With the ability to silence individual genes and to drug the ‘undruggable’, RNA interference (RNAi) therapy has
recently shown clinical success by delivering small interfering RNA (siRNA) to the liver for genetic diseases.
However, new delivery strategies will be needed to expand the targeting possibilities of siRNA therapy beyond
the liver for treatment of other diseases like atherosclerotic cardiovascular disease. We have therefore formed a
team with complementary expertise in siRNA delivery and atherosclerosis, and developed a targeted siRNA
delivery strategy to silence calcium/calmodulin-dependent kinase-IIγ (CaMKIIγ), a kinase that is activated in the
macrophages of human and mouse advanced atherosclerotic lesions and promotes progression of clinically
dangerous plaques. We showed that targeted siCamk2g treatment improved plaque stability by reducing necrotic
core area and increasing fibrous cap thickness. Nevertheless, due to the transient nature of siRNA-mediated
gene silencing, a critical challenge for siRNA therapy is the short duration of action. In this project, we propose
to i) explore a novel siRNA delivery strategy that can dramatically extend the duration of CaMKIIγ silencing in
atherosclerotic lesional macrophages; and ii) engineer the new siCamk2g platform for dual-cell targeting for
integrated treatment of obesity-induced type 2 diabetes and atherosclerosis. Our new preliminary work has
identified a distinct type of synthetic lipid-poly(ethylene glycol) (lipid-PEG) biomaterials that can markedly prolong
siRNA silencing and its blood circulation. We thus hypothesize that the new lipid-PEG-mediated long-acting
siCamk2g therapy could effectively target both atherosclerosis and insulin resistance with low dosing frequency.
In Aim 1, we will synthesize a series of such distinct lipid-PEG biomaterials; systematically explore the lipid-PEG
effects on the duration of action and pharmacokinetics of siRNA; and optimize the unique siRNA delivery platform
in a mouse model with established atherosclerosis. The lead candidate with longest duration of macrophage
CaMKIIγ silencing will be evaluated for efficacy in dampening atherosclerosis, with an emphasis on plaque
necrosis, fibrous cap thickness, and efferocytosis and other inflammation resolution endpoints. In Aim 2, we will
expand the long-acting siRNA therapy to dual-cell targeting for cardiometabolic disease, based upon the fact
that CaMKIIγ is a common upstream target in both hepatocytes in obesity-induced insulin resistance and lesional
macrophages in atherosclerosis. We will iteratively optimize the dual-targeting siCamk2g system in vitro and in
vivo, including in a new mouse model with combined insulin resistance and atherosclerosis, in a manner to
effectively improve type 2 diabetes and suppress atherosclerosis. We expect that successful completion of this
project will lead to fundamental understanding of how the new lipid-PEG chemistry controls siRNA delivery and
the development of a novel class of long-acting RNAi therapy for atherosclerosis and cardiometabolic disease.
抽象的
RNA干扰(RNAi)具有沉默的单个基因和吸毒的能力,具有
最近通过将小干扰RNA(siRNA)传递到肝脏的遗传疾病来表现出临床成功。
但是,将需要新的交付策略来扩大siRNA治疗的靶向可能性
治疗其他疾病等肝脏等肝脏疾病等疾病。因此,我们已经形成了
团队具有siRNA交付和动脉粥样硬化的完整专业知识,并开发了有针对性的siRNA
递送策略静音钙/钙调蛋白依赖性激酶-IIγ(CAMKIIγ),一种激活的激酶
人和小鼠的巨噬细胞先进的动脉粥样硬化病变,并促进临床上的进展
我们表明,靶向的SICAMK2G治疗通过减少坏死,改善了斑块稳定性
核心区域和增加的纤维帽厚度。然而,由于siRNA介导的短暂性
基因沉默,siRNA治疗的关键挑战是作用时间短。在这个项目中,我们建议
i)探索一种新型的siRNA传递策略,该策略可以极大地延长camkiγ的持续时间
动脉粥样硬化病变巨噬细胞; ii)设计新的SICAMK2G双电池定位平台
肥胖引起的2型糖尿病和动脉粥样硬化的综合治疗。我们的新初步工作
鉴定出一种独特的合成脂质 - 乙二醇(乙二醇)(脂质-PEG)生物材料,可以显着延长
siRNA沉默及其血液循环。因此,我们假设新的脂质-PEG介导的长效
SICAMK2G治疗可以有效地靶向动脉粥样硬化和低给药频率的胰岛素抵抗。
在AIM 1中,我们将合成一系列这种不同的脂质生物材料。系统地探索脂质-PEG
对siRNA的作用和药代动力学的影响;并优化独特的siRNA传递平台
在具有既定动脉粥样硬化的小鼠模型中。巨噬细胞持续时间最长的铅候选人
CAMKIγ沉默将评估以使动脉粥样硬化的效率进行效率,重点是斑块
坏死,纤维帽厚度和肿瘤病和其他感染终点。在AIM 2中,我们将
基于事实
CAMKIIγ是肥胖诱导的胰岛素耐药性和病变的肝细胞中两个常见的上游靶标
动脉粥样硬化中的巨噬细胞。我们将在体外和IN迭代优化双重目标SICAMK2G系统
体内,包括在具有联合胰岛素耐药性和动脉粥样硬化的新小鼠模型中,以一种方式
有效改善2型糖尿病并抑制动脉粥样硬化。我们希望成功完成
项目将导致对新脂质-PEG化学如何控制siRNA的传递和
开发一种新型的长效RNAI治疗,用于动脉粥样硬化和心脏代谢疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinjun Shi其他文献
Jinjun Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinjun Shi', 18)}}的其他基金
A New Lipid Nanoparticle Technology Enabling Long-acting mRNA Therapy
新型脂质纳米颗粒技术实现长效 mRNA 治疗
- 批准号:
10669826 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Long-Acting RNAi Therapy for Atherosclerosis and Insulin Resistance
长效 RNAi 治疗动脉粥样硬化和胰岛素抵抗
- 批准号:
10424582 - 财政年份:2021
- 资助金额:
$ 71.13万 - 项目类别:
Long-Acting RNAi Therapy for Atherosclerosis and Insulin Resistance
长效 RNAi 治疗动脉粥样硬化和胰岛素抵抗
- 批准号:
10631236 - 财政年份:2021
- 资助金额:
$ 71.13万 - 项目类别:
Nanoparticle Co-delivery of RNAi and Chemotherapy for Multidrug Resistant Cancers
纳米粒子联合递送 RNAi 和化疗治疗多重耐药癌症
- 批准号:
8689250 - 财政年份:2013
- 资助金额:
$ 71.13万 - 项目类别:
Nanoparticle Co-delivery of RNAi and Chemotherapy for Multidrug Resistant Cancers
纳米粒子联合递送 RNAi 和化疗治疗多重耐药癌症
- 批准号:
8707222 - 财政年份:2013
- 资助金额:
$ 71.13万 - 项目类别:
Nanoparticle Co-delivery of RNAi and Chemotherapy for Multidrug Resistant Cancers
纳米粒子联合递送 RNAi 和化疗治疗多重耐药癌症
- 批准号:
8916630 - 财政年份:2013
- 资助金额:
$ 71.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sumoylation and its regulation in testicular Sertoli cells
睾丸支持细胞的苏酰化及其调控
- 批准号:
10654204 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
- 批准号:
10664501 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别: