Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
基本信息
- 批准号:10280257
- 负责人:
- 金额:$ 70.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:APOL1 geneAddressAdultAffectAffinityAfrican AmericanAlbuminuriaAngiotensin ReceptorAngiotensin-Converting Enzyme InhibitorsBiological AvailabilityChronic Kidney FailureEarly identificationFunctional disorderGeneral PopulationGlomerular Filtration RateHemoglobinHemolysisHemolytic AnemiaHigh PrevalenceImmune responseIndividualInflammatory ResponseInjuryInjury to KidneyIschemic StrokeKidneyKidney DiseasesLife ExpectancyMachine LearningMeasuresMediatingModelingMorbidity - disease rateMulticenter StudiesNitric OxideOrganOxidative StressOxygenPathogenesisPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPopulationPrevalencePulmonary HypertensionRenal functionReportingRiskRisk FactorsSeveritiesSickle CellSickle Cell AnemiaSickle HemoglobinTestingUrineVariantVascular Diseasesbasefunctional declinehigh riskhydroxyureaimprovedmodifiable riskmortalitymortality risknovelpatient populationpolymerizationpredictive modelingpreventprospectiveprotective effectrandomized controlled studyrenal damagesickling inhibitorsmall moleculestandard of caretargeted treatment
项目摘要
ABSTRACT
Sickle cell disease (SCD) is characterized by a vasculopathy affecting multiple end organs, with complications
including chronic kidney disease (CKD). Albuminuria, an early measure of glomerular injury, is common in
SCD and predicts progressive kidney disease. Kidney function decline is faster in SCD patients than in the
general African American population. The prevalence of rapid decline in SCD is 3-fold higher than in the
general population. Furthermore, high-risk APOL1 variants are associated with an increased risk of
albuminuria and progression of CKD in SCD. Kidney disease, regardless of severity, and rapid eGFR decline
are associated with increased mortality in SCD. As such, early identification of patients at risk for progression
of CKD is important to address potentially modifiable risk factors, slow eGFR decline and reduce mortality.
Despite the high prevalence of CKD and its contribution to increased morbidity and mortality, available
treatments for SCD-related kidney disease remain limited. Although angiotensin converting enzyme inhibitors
(ACE-I), angiotensin receptor blockers (ARBs), and hydroxyurea decrease albuminuria in short-term studies,
their benefits in preventing or slowing progressive loss of kidney function in SCD remain undefined.
We have recently reported that machine learning (ML) models can identify patients at high risk for rapid decline
in kidney function. Further, higher hemoglobin concentration is also an independent predictor of decreased
odds of rapid kidney function decline. With the contribution of intravascular hemolysis to the pathophysiology of
SCD-related glomerulopathy, voxelotor, a small molecule which modifies sickle hemoglobin oxygen affinity and
improves sickle RBC survival, may decrease glomerular injury and slow the progression of CKD in individuals
with SCD.
In this application, we propose the conduct of a prospective, multicenter study to build a ML-based predictive
model for progression of CKD in adults with SCD. Furthermore, in individuals predicted to be at risk for rapid
decline in kidney function, based on the presence of persistent albuminuria (urine ACR ≥ 100 mg/g), we will
evaluate the effect of voxelotor on albuminuria, rapid decline in kidney function and progression of CKD.
With advances in the understanding of the pathophysiology of SCD and its complications, combined with an
increasing number of approved drug therapies, early identification of patients at risk for progressive kidney
disease and subsequent increased risk of death is necessary to modify known risk factors, initiate targeted
therapies and possibly increase life expectancy. Further, with the known contribution of hemolytic anemia to
the pathogenesis of SCD-related glomerulopathy and progressive kidney disease, drugs that decrease
hemolysis are likely to be beneficial in preventing and/or slowing the progression of kidney disease in this
patient population.
抽象的
镰状细胞疾病(SCD)的特征是影响多个末端器官的血管病,并发症
包括慢性肾脏疾病(CKD)。蛋白尿是肾小球损伤的早期测量,在
SCD并预测进行性肾脏疾病。 SCD患者的肾功能下降比
一般非裔美国人人口。 SCD快速下降的患病率比
一般人口。此外,高风险Apol1变体与增加的风险有关
SCD中CKD的蛋白尿和进展。肾脏疾病,无论严重程度如何,EGFR迅速下降
与SCD死亡率增加有关。因此,早期确定有进展风险的患者
CKD的重要性对于解决潜在可修改的危险因素,缓慢的EGFR下降并降低死亡率很重要。
尽管CKD的患病率很高及其对发病率和死亡率增加的贡献,但可用
与SCD相关的肾脏疾病的治疗仍然有限。尽管血管紧张素转化酶抑制剂
(ACE-I),血管紧张素受体阻滞剂(ARB)和羟基脲在短期研究中降低蛋白尿,
他们在SCD中预防或放缓肾脏功能的逐步逐渐损失方面的好处仍然不确定。
我们最近报道说,机器学习(ML)模型可以识别出快速下降风险高风险的患者
在肾功能中。此外,较高的血红蛋白浓度也是改善的独立预测因子
快速肾功能下降的几率。血管内溶血对病理生理的贡献
与SCD相关的肾小球病,紫外线,一种小分子,可修饰镰状血红蛋白氧亲和力和
改善镰刀RBC的生存,可能会减少肾小球损伤并减慢个体的CKD进展
与SCD。
在此应用中,我们提出了一项前瞻性,多中心研究的行为,以建立基于ML的预测
SCD成人CKD进展的模型。此外,在个人中被预测有迅速的风险
肾功能下降,基于持续的蛋白尿(尿液ACR≥100mg/g)的存在,我们将
评估体素对蛋白尿的影响,肾功能快速下降和CKD的进展。
随着对SCD的病理生理及其并发症的理解的进步,结合了
批准的药物疗法数量增加,早期鉴定出患有进行性肾脏风险的患者
疾病和随后的死亡风险增加是改变已知危险因素,启动目标是必要的
疗法并可能增加预期寿命。此外,溶血性贫血对
与SCD相关的肾小球病和进行性肾脏疾病的发病机理,降低的药物
溶血可能有益于预防和/或减缓肾脏疾病的进展
患者人数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth I Ataga其他文献
Age-related Impact of the CDC's 2016 <em>Guideline for Prescribing Opioids for Chronic Pain</em> on Opioid Prescribing Levels and Health Outcomes among the Patients with Sickle Cell Disease
- DOI:
10.1182/blood-2022-165436 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Hyeun Ah Kang;Yahan Zhang;Jamie Barner;Kenneth I Ataga - 通讯作者:
Kenneth I Ataga
Machine Learning Predicts Acute Kidney Injury in Hospitalized Patients with Sickle Cell Disease
- DOI:
10.1182/blood-2022-165572 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Rima Zahr;Akram Mohammed;Surabhi Naik;Daniel Faradji;Jeffrey D. Lebensburger;Kenneth I Ataga;Robert L Davis - 通讯作者:
Robert L Davis
Evaluating Equations for Estimated Glomerular Filtration Rate (eGFR) in Patients with Sickle Cell Disease (SCD)
- DOI:
10.1182/blood-2022-163314 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Vimal K Derebail;Laura Y Zhou;Laila Elsherif;Kammie L Patillo;David Wichlan;Kristina Landes;Paula McCune;Laura R Loehr;Robert M Cronin;Payal C Desai;Jianwen Cai;Kenneth I Ataga - 通讯作者:
Kenneth I Ataga
Kenneth I Ataga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth I Ataga', 18)}}的其他基金
Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
- 批准号:
10676823 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
THE ASSOCIATION OF BIOMARKERS OF ENDOTHELIAL FUNCTION WITH PROSPECTIVE CHANGES IN KIDNEY FUNCTION IN SICKLE CELL ANEMIA
镰状细胞性贫血中内皮功能生物标志物与肾功能预期变化的关联
- 批准号:
10241267 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
THE ASSOCIATION OF BIOMARKERS OF ENDOTHELIAL FUNCTION WITH PROSPECTIVE CHANGES IN KIDNEY FUNCTION IN SICKLE CELL ANEMIA
镰状细胞性贫血中内皮功能生物标志物与肾功能预期变化的关联
- 批准号:
9372894 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8467839 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8722604 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8857241 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
CLINICAL TRIAL: IMPACTS TRIAL: INVESTIGATION OF THE MODULATION OF PHOSPHOLIPASE
临床试验:影响试验:磷脂酶调节的研究
- 批准号:
7716901 - 财政年份:2008
- 资助金额:
$ 70.53万 - 项目类别:
CLINICAL TRIAL: PHASE III, ICA-17043 WITH OR WITHOUT HYDROXYUREA IN SICKLE CELL
临床试验:III 期,ICA-17043 在镰状细胞中含或不含羟基脲
- 批准号:
7716822 - 财政年份:2008
- 资助金额:
$ 70.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 70.53万 - 项目类别:
Genetic testing to Address Renal Disease Disparities Across the U.S. (GUARDD-US) - Administrative Supplement
通过基因检测解决全美肾脏疾病差异问题 (GUARDD-US) - 行政补充
- 批准号:
10620537 - 财政年份:2022
- 资助金额:
$ 70.53万 - 项目类别:
Etiology of Persistent Microalbuminuria in Nigeria
尼日利亚持续性微量白蛋白尿的病因学
- 批准号:
10432130 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
- 批准号:
10676823 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别: