Developing tools for the unbiased analysis and visualization of scRNA-seq data

开发用于 scRNA-seq 数据公正分析和可视化的工具

基本信息

  • 批准号:
    10279320
  • 负责人:
  • 金额:
    $ 29.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Single-cell RNA sequencing (scRNA-seq) provides genome-wide information about gene expression at the resolution of individual cells. The unprecedented scope of these data is revolutionizing our understanding of development and tissue homeostasis as well as diseases like cancer. A major issue with scRNA-seq, however, is the shear scale of the data, consisting of ~20,000 gene expression measurements in thousands to millions of cells. Effective computational approaches are clearly required to translate data of this size and complexity into actionable biological insights. For instance, scRNA-seq data are approximately 20,000-dimensional, and as a result all available analysis pipelines rely on multiple dimensionality reduction steps. This usually entails a combination of linear tools like PCA and non-linear techniques like t-SNE and UMAP. The data is generally reduced to between 10- and 100-D for data analysis (e.g. clustering into distinct cell types) and 2-D for visualization. The problem, however, is that dimensionality reduction can lead to loss of information. We recently showed that this loss of information is dramatic: for any given cell, over 95% of its neighbors are changed in the process of dimensionality reduction. This complete change in the structure of the data can introduce significant noise and bias into the analysis, and suggests the critical need for alternative approaches. The premise of this application is that reducing bias in scRNA-seq data analysis will maximize our ability to extract meaningful information from the data. In this proposal, we focus on developing new algorithms to address three specific steps in the typical analysis pipeline: (1) Dimensionality Reduction: Our hypothesis is that deep neural networks can be explicitly trained to maximize the amount of information that can be retained for both data analysis and visualization. (2) Feature Selection: Not all genes are equally informative for downstream analyses, so researchers generally choose a subset of genes based on variation in the population. We have shown that standard approaches to selecting genes convolve true biological variation with technical noise from the experiment. We hypothesize that statistical models based on our understanding of sources of technical noise can be used to select more informative genes. (3) Cell clustering: Clustering the data to determine cell types is critical, but cells with different identities often form complex, overlapping geometries in gene expression space that are difficult for existing algorithms to resolve. Our hypothesis is that new clustering tools, guided by prior knowledge and leveraging innovations in clustering from image segmentation, can overcome this problem. We will build these new tools and test them against existing benchmark datasets and novel data generated by our experimental collaborators. We will also integrate these tools into popular scRNA-seq analysis packages. Successful completion of the proposed work will allow the field to extract more biologically relevant information from the burgeoning set of scRNA-seq datasets.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric J Deeds其他文献

Eric J Deeds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric J Deeds', 18)}}的其他基金

Structural and Dynamical Specificity in Intracellular Signaling Networks
细胞内信号网络的结构和动态特异性
  • 批准号:
    7224411
  • 财政年份:
    2007
  • 资助金额:
    $ 29.67万
  • 项目类别:
Structural and Dynamical Specificity on Intracellular Signaling Networks
细胞内信号网络的结构和动态特异性
  • 批准号:
    7570698
  • 财政年份:
    2007
  • 资助金额:
    $ 29.67万
  • 项目类别:
Structural and Dynamical Specificity in Intracellular Signaling Networks
细胞内信号网络的结构和动态特异性
  • 批准号:
    7361407
  • 财政年份:
    2007
  • 资助金额:
    $ 29.67万
  • 项目类别:

相似海外基金

Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
  • 批准号:
    MR/Y013891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
  • 批准号:
    BB/Y006542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Research Grant
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
  • 批准号:
    23H03323
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
  • 批准号:
    23K08293
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
  • 批准号:
    479570
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
  • 批准号:
    488898
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Operating Grants
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
  • 批准号:
    23K19922
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
  • 批准号:
    10605981
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
  • 批准号:
    10813753
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
  • 批准号:
    10604611
  • 财政年份:
    2023
  • 资助金额:
    $ 29.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了