Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
基本信息
- 批准号:10281044
- 负责人:
- 金额:$ 57.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimalsAxonBiologicalCell membraneCellsCellular StructuresCryoelectron MicroscopyCytosolDataDetectionDevelopmentDevicesDyesDynein ATPaseEndocytosisEnzymesFeedbackFluorescenceFluorescence Resonance Energy TransferFundingGTP-Binding ProteinsGenesHourImageIn SituIn VitroIndividualKineticsLabelLigand BindingLightMeasurementMeasuresMembrane ProteinsMethodsMicrofluidicsMicroscopeMicroscopyModelingMolecularMolecular MotorsMolecular StructureMotionMovementNeuronsOpticsOrganismPathway interactionsPhotobleachingPhotonsPhysicsPower strokeProcessProteinsResearchResearch PersonnelResolutionRoentgen RaysSideSignaling ProteinSpatial DistributionSurfaceSurvival RateSynapsesSystemTechnologyTestingTimeTissuesTransfectionVesicleVirusVisualizationWorkbasebiological researchbiological systemsbiophysical techniquescell injuryextracellularimprovedin vivoinfrared microscopyinsightinstrumentinstrumentationlaser tweezermillimetermillisecondmolecular imagingmolecular scalenanometernanoparticlenanoscalenew technologynovelparticleplasmonicspreventprofessorpromoterprototypereceptorresponsesingle moleculesingle-molecule FRETtechnique developmenttemporal measurementtool
项目摘要
Project Summary / Abstract (30 line maximum)
This research, in response to the PAR-19-253, “Focused Technology Research andDevelopment,”
aims to pioneer new advances in biological optical microscopy. Methods such as the development of
fluorescent proteins, single molecule fluorescence detection, single molecule fluorescence resonance
energy transfer (smFRET) and super-resolution microscopy enabled molecular level study of in vitro and
live cells of increasing complexity. The single molecule methods allowed researchers to observe kinetic
pathways and transient states unobservable with bulk methods. Despite recent advances, the existing
optical probes have limitations. Fluorescent proteins are comparable in size to the proteins they label and
photobleach quickly. In situ labeling of cytosol proteins is possible, but in vitro labeling methods are much
preferred and there are no reliable methods to introduce these proteins into cytosol of cells.
This research will address these grand challenges by fundamentally expanding the toolbox of
optical microscopy. Aim 1 will develop new methods to introduce proteins labeled in vitro with organic
dyes directly into the cytosol of cells and the insertion of dye-labeled membrane proteins into cell
membranes, thereby expanding the application of optical probes to new biological systems. These
methods will be used to insert up-converting nanoparticle (UCNP) probes into live cells to allow the long-
term tracking of specific individual proteins from minutes to months with nanometer spatial resolution.
This technology will also allow the controllable transfection of cells with multiple genes. Aim 2 will
fundamentally improve the temporal resolution of smFRET to ≤ 100𝜇𝑠 and develop smFRET methods
that can span across cell membranes. Aim 3 will extend biological optical microscopy to access the
temporal and spatial scales of molecular motion. Here, UCNPs will be used to measure the continuous
transport of cargos by dynein in DRG neurons capable of resolving single molecular steps with one
millisecond time resolution over a distance of 900 𝜇𝑚. Using plasmonic optical probes, this work aims to
achieve ~ 100 𝑛𝑠 time resolution and < 1 𝑛𝑚 spatial resolution in live cells.
By the end of the 4-year funding period, a device will be demonstrated that is able to introduce
controllable numbers of nanoparticles, proteins, and multiple genes and promoters into 1000s of cells with
high survival rates. The cells will be transferred onto microscope coverslips or microfluidic cells suitable
for high-resolution optical microscopy. An instrument capable of 100𝜇𝑠 smFRET will have been used to
study the dynamics of G-protein couped receptors (GPCRs). Another instrument will be built to improve
the time resolution of sub-nanometer movement to by up to ~ 100 𝑛𝑠. With this instrument, the real-time
visualization of the motion of molecular systems may be possible.
项目摘要 /摘要(最多30行)
这项研究回应了PAR-19-253,“重点技术研发”,
旨在先驱生物光学显微镜的新进展。诸如开发的方法
荧光蛋白,单分子荧光检测,单分子荧光共振
能量转移(SMFRET)和超分辨率显微镜可以实现体外和
复杂性增加的活细胞。单分子方法允许研究人员观察动力学
途径和瞬态状态无法使用大量方法进行观察。尽管最近进步,但现有
光学问题有局限性。荧光蛋白的大小与它们标记的蛋白质相当,并且
迅速光漂白。可以原位的细胞质蛋白标记,但体外标记方法很大
首选,并且没有可靠的方法将这些蛋白质引入细胞细胞溶胶。
这项研究将通过从根本扩展工具箱来解决这些巨大的挑战
光学显微镜。 AIM 1将开发新方法,以引入有机体外标记的蛋白质
染料直接进入细胞的细胞质,并将染料标记的膜蛋白插入细胞
膜,从而将光学问题的应用扩展到新的生物系统中。这些
方法将用于将纳米颗粒(UCNP)问题插入活细胞中,以允许长期
通过纳米空间分辨率从几分钟到几个月的特定单个蛋白质进行术语跟踪。
该技术还将允许使用多个基因转染细胞。 AIM 2意志
从根本上提高了SMFRET的暂时分辨率为≤100𝜇𝑠并开发SMFRET方法
可以跨越细胞膜。 AIM 3将扩展生物光学显微镜以访问
分子运动的临时和空间尺度。在这里,UCNP将用于测量连续
DRNNEIN在DRG神经元中通过DRNNEIN运输的Cargos,能够用一个分子步骤解决单分子步骤
毫秒的时间分辨率超过900 𝜇𝑚。使用等离子光学问题,此工作旨在
在活细胞中实现〜100𝑛𝑠时间分辨率和<1𝑛𝑚空间分辨率。
到4年筹资期结束时,将证明该设备能够引入
可控制数量的纳米颗粒,蛋白质以及多个基因和启动子到1000 s的细胞中
高存活率。细胞将被转移到显微镜盖玻片或微流体细胞上
用于高分辨率光学显微镜。能够使用100 smfret的仪器
研究G蛋白双门受体(GPCR)的动力学。将建造另一个工具以改进
子纳米计的时间分辨率最高为〜100𝑛𝑠。使用该乐器,实时
可以看到分子系统运动的可视化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Chu其他文献
Steven Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Chu', 18)}}的其他基金
Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
- 批准号:
10478197 - 财政年份:2021
- 资助金额:
$ 57.86万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10222719 - 财政年份:2018
- 资助金额:
$ 57.86万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10015308 - 财政年份:2018
- 资助金额:
$ 57.86万 - 项目类别:
Single Molecule Studies of Transcription Complexes
转录复合物的单分子研究
- 批准号:
6999945 - 财政年份:2005
- 资助金额:
$ 57.86万 - 项目类别:
Single molecular fluorescence and force spectroscopy
单分子荧光和力谱
- 批准号:
6760478 - 财政年份:2003
- 资助金额:
$ 57.86万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 57.86万 - 项目类别:
Functional Landscape of Glycosylation in Skin Cancer
皮肤癌中糖基化的功能景观
- 批准号:
10581094 - 财政年份:2023
- 资助金额:
$ 57.86万 - 项目类别: