Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
基本信息
- 批准号:10281044
- 负责人:
- 金额:$ 57.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimalsAxonBiologicalCell membraneCellsCellular StructuresCryoelectron MicroscopyCytosolDataDetectionDevelopmentDevicesDyesDynein ATPaseEndocytosisEnzymesFeedbackFluorescenceFluorescence Resonance Energy TransferFundingGTP-Binding ProteinsGenesHourImageIn SituIn VitroIndividualKineticsLabelLigand BindingLightMeasurementMeasuresMembrane ProteinsMethodsMicrofluidicsMicroscopeMicroscopyModelingMolecularMolecular MotorsMolecular StructureMotionMovementNeuronsOpticsOrganismPathway interactionsPhotobleachingPhotonsPhysicsPower strokeProcessProteinsResearchResearch PersonnelResolutionRoentgen RaysSideSignaling ProteinSpatial DistributionSurfaceSurvival RateSynapsesSystemTechnologyTestingTimeTissuesTransfectionVesicleVirusVisualizationWorkbasebiological researchbiological systemsbiophysical techniquescell injuryextracellularimprovedin vivoinfrared microscopyinsightinstrumentinstrumentationlaser tweezermillimetermillisecondmolecular imagingmolecular scalenanometernanoparticlenanoscalenew technologynovelparticleplasmonicspreventprofessorpromoterprototypereceptorresponsesingle moleculesingle-molecule FRETtechnique developmenttemporal measurementtool
项目摘要
Project Summary / Abstract (30 line maximum)
This research, in response to the PAR-19-253, “Focused Technology Research andDevelopment,”
aims to pioneer new advances in biological optical microscopy. Methods such as the development of
fluorescent proteins, single molecule fluorescence detection, single molecule fluorescence resonance
energy transfer (smFRET) and super-resolution microscopy enabled molecular level study of in vitro and
live cells of increasing complexity. The single molecule methods allowed researchers to observe kinetic
pathways and transient states unobservable with bulk methods. Despite recent advances, the existing
optical probes have limitations. Fluorescent proteins are comparable in size to the proteins they label and
photobleach quickly. In situ labeling of cytosol proteins is possible, but in vitro labeling methods are much
preferred and there are no reliable methods to introduce these proteins into cytosol of cells.
This research will address these grand challenges by fundamentally expanding the toolbox of
optical microscopy. Aim 1 will develop new methods to introduce proteins labeled in vitro with organic
dyes directly into the cytosol of cells and the insertion of dye-labeled membrane proteins into cell
membranes, thereby expanding the application of optical probes to new biological systems. These
methods will be used to insert up-converting nanoparticle (UCNP) probes into live cells to allow the long-
term tracking of specific individual proteins from minutes to months with nanometer spatial resolution.
This technology will also allow the controllable transfection of cells with multiple genes. Aim 2 will
fundamentally improve the temporal resolution of smFRET to ≤ 100𝜇𝑠 and develop smFRET methods
that can span across cell membranes. Aim 3 will extend biological optical microscopy to access the
temporal and spatial scales of molecular motion. Here, UCNPs will be used to measure the continuous
transport of cargos by dynein in DRG neurons capable of resolving single molecular steps with one
millisecond time resolution over a distance of 900 𝜇𝑚. Using plasmonic optical probes, this work aims to
achieve ~ 100 𝑛𝑠 time resolution and < 1 𝑛𝑚 spatial resolution in live cells.
By the end of the 4-year funding period, a device will be demonstrated that is able to introduce
controllable numbers of nanoparticles, proteins, and multiple genes and promoters into 1000s of cells with
high survival rates. The cells will be transferred onto microscope coverslips or microfluidic cells suitable
for high-resolution optical microscopy. An instrument capable of 100𝜇𝑠 smFRET will have been used to
study the dynamics of G-protein couped receptors (GPCRs). Another instrument will be built to improve
the time resolution of sub-nanometer movement to by up to ~ 100 𝑛𝑠. With this instrument, the real-time
visualization of the motion of molecular systems may be possible.
项目摘要/摘要(最多30行)
本研究响应PAR-19-253《聚焦技术研究与开发》
旨在开创生物光学显微镜的新进展。方法,如开发
荧光蛋白、单分子荧光检测、单分子荧光共振
能量转移(SmFRET)和超分辨显微镜使分子水平的研究成为可能
越来越复杂的活细胞。单分子方法使研究人员能够观察到动力学
用整体方法观察不到的路径和瞬变状态。尽管最近取得了进展,但现有的
光学探测器有其局限性。荧光蛋白在大小上与它们标记的蛋白和
快速漂白。胞浆蛋白的原位标记是可能的,但体外标记方法很多。
首选的,并且没有可靠的方法将这些蛋白质引入细胞的胞浆。
本研究将通过从根本上扩展工具箱来解决这些重大挑战
光学显微镜。Aim 1将开发新的方法来引入体外标记的有机蛋白质
染料直接进入细胞胞浆和染料标记的膜蛋白插入细胞
膜,从而扩大了光学探针在新的生物系统中的应用。这些
将使用方法将上转换纳米颗粒(UCNP)探针插入活细胞中,以允许长时间的-
以纳米空间分辨率对特定的单个蛋白质进行从几分钟到几个月的术语跟踪。
这项技术还将允许对具有多个基因的细胞进行可控的转基因。目标2将
从根本上提高SMFRET到≤100𝜇𝑠的时间分辨率,并发展SMFRET方法
它可以跨越细胞膜。AIM 3将扩展生物光学显微镜以访问
分子运动的时间和空间尺度。在这里,UCNP将被用来衡量连续
背根神经节神经元中动力蛋白对货物的转运
在900𝜇𝑚距离上的毫秒时间分辨率。使用等离子体光学探头,这项工作旨在
在活细胞中达到~100𝑛𝑠的时间分辨率和<;1𝑛𝑚的空间分辨率。
到4年资助期结束时,将展示一种能够引入
可控数量的纳米颗粒、蛋白质、多个基因和启动子进入数千个细胞
高存活率。细胞将被转移到适合的显微镜盖玻片或微流控细胞上
用于高分辨率光学显微镜。一台100𝜇𝑠的smFRET仪器将被用来
研究G蛋白偶联受体(GPCRs)的动力学。将建造另一台仪器来改进
亚纳米运动的时间分辨率高达~100𝑛𝑠。有了这个仪器,实时的
分子系统运动的可视化是可能的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Chu其他文献
Steven Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Chu', 18)}}的其他基金
Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
- 批准号:
10478197 - 财政年份:2021
- 资助金额:
$ 57.86万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10222719 - 财政年份:2018
- 资助金额:
$ 57.86万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10015308 - 财政年份:2018
- 资助金额:
$ 57.86万 - 项目类别:
Single Molecule Studies of Transcription Complexes
转录复合物的单分子研究
- 批准号:
6999945 - 财政年份:2005
- 资助金额:
$ 57.86万 - 项目类别:
Single molecular fluorescence and force spectroscopy
单分子荧光和力谱
- 批准号:
6760478 - 财政年份:2003
- 资助金额:
$ 57.86万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 57.86万 - 项目类别:
Research Grant