Single molecular fluorescence and force spectroscopy
单分子荧光和力谱
基本信息
- 批准号:7551204
- 负责人:
- 金额:$ 18.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The long-term goal of this work is to develop an improved understanding of the mechanics of
folding/unfolding in biological macromolecules. We will use a variety of state-of-the-art biophysical techniques to study nucleic acids as a model system. Like proteins, RNA enzymes can carry out catalysis, and exhibit an array of primary, secondary, and tertiary structural elements in their active, folded configurations. However, in contrast to polypeptides, RNA is based on a polymer repertoire of 4 bases instead of 20 amino acids. They also display a more hierarchical relation between secondary and tertiary structural motifs. RNA enzymes are also
more easily synthesized, modified, manipulated, and modeled, all of which make them attractive candidates for biophysical studies. It is anticipated that some principles of RNA- and DNA-folding will generalize into the protein world, in addition to providing further insights into nucleic acid biochemistry. This proposal will concentrate on one of the best-characterized ribonucleic acid enzymes, the Group I intron ribozyme from T. thermophila and its derivatives. Our recent work has demonstrated the feasibility of studying folding, unfolding, and catalysis in the Tetrahymena ribozyme at the single molecule level. Single molecule methods such as single-molecule
fluorescence energy transfer (FRET) and single-molecule optical force spectroscopy can reveal details of folding intermediates, enzyme stochasticity, kinetic rates and paths, that are not readily accessible through bulk methods. By placing fluorescent dye molecules in a variety of locations on the ribozyme, we propose to study the first stages of rapid collapse and the role of fluctuations in folding, as well as search for new intermediate states and further map the folding landscape of this enzyme. We also plan to use high resolution optical tweezers to measure how the ribozyme denatures under specific force loads. High-resolution measurements of the end-to-end distance of the molecule as a function of load should allow to assign specific
features of this spectra to specific structural states. Finally, these physically-based studies of the how the well characterized Tetrahymena ribozyme folds and unfolds will no doubt add to our understanding of more complicated ribozymes and medically relevant RNA enzymes, such as the ribosome.
这项工作的长期目标是提高对
生物大分子中的折叠/解折叠。我们将使用各种最先进的生物物理技术来研究核酸作为模型系统。像蛋白质一样,RNA酶可以进行催化,并以其活性折叠构型展示一系列一级、二级和三级结构元件。然而,与多肽相反,RNA基于4个碱基而不是20个氨基酸的聚合物库。它们还显示出二级和三级结构基序之间的层次关系。RNA酶也是
更容易合成,修改,操纵和建模,所有这些都使它们成为生物物理研究的有吸引力的候选人。预计RNA和DNA折叠的一些原理将推广到蛋白质世界,除了提供对核酸生物化学的进一步见解。这项建议将集中在一个最好的特点,核糖核酸酶,第一组内含子核酶从T。嗜热菌及其衍生物。我们最近的工作证明了在单分子水平上研究四膜虫核酶的折叠、去折叠和催化的可行性。单分子方法,如单分子
荧光能量转移(FRET)和单分子光学力谱可以揭示折叠中间体、酶随机性、动力学速率和路径的细节,这些是通过本体方法不容易获得的。通过将荧光染料分子放置在核酶的不同位置,我们建议研究快速崩溃的第一阶段和折叠中波动的作用,以及寻找新的中间状态,并进一步绘制这种酶的折叠景观。我们还计划使用高分辨率的光镊来测量核酶在特定的力载荷下如何变性。作为负载函数的分子的端到端距离的高分辨率测量应允许分配特定的分子量。
这些光谱的特征与特定的结构状态有关。最后,这些以物理为基础的关于四膜虫核酶如何折叠和展开的研究无疑将增加我们对更复杂的核酶和医学相关的RNA酶(如核糖体)的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Chu其他文献
Steven Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Chu', 18)}}的其他基金
Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
- 批准号:
10478197 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Extending the temporal and spatial capabilities of single-molecule methods
扩展单分子方法的时间和空间能力
- 批准号:
10281044 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10222719 - 财政年份:2018
- 资助金额:
$ 18.95万 - 项目类别:
Noninvasive deep-tissue single-cell imaging and nanoprobe development
非侵入性深部组织单细胞成像和纳米探针开发
- 批准号:
10015308 - 财政年份:2018
- 资助金额:
$ 18.95万 - 项目类别:
Single Molecule Studies of Transcription Complexes
转录复合物的单分子研究
- 批准号:
6999945 - 财政年份:2005
- 资助金额:
$ 18.95万 - 项目类别:
Single molecular fluorescence and force spectroscopy
单分子荧光和力谱
- 批准号:
6760478 - 财政年份:2003
- 资助金额:
$ 18.95万 - 项目类别:
相似海外基金
A structural elucidation technique of unknown substances with mass spectrometry, quantum chemistry, and chemical kinetics and its application to unknown growth substrates for pathogenic bacteria
利用质谱、量子化学和化学动力学解析未知物质的结构及其在病原菌未知生长基质中的应用
- 批准号:
23H03559 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Continuing Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
- 批准号:
2305153 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体的晶体结构控制的热化学和化学动力学
- 批准号:
2305154 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
- 批准号:
2305155 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Role of chemical kinetics on detonation stability and cell sizes
化学动力学对爆炸稳定性和泡孔尺寸的作用
- 批准号:
RGPIN-2020-04201 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Discovery Grants Program - Individual
CAS:Mechanochemical Activation Carriers and Mechanisms by in Situ Chemical Kinetics Monitoring
CAS:原位化学动力学监测机械化学活化载体和机制
- 批准号:
2154893 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
Taking On the "Curse of Dimensionality" in Chemical Kinetics: Complex Chemical Reaction Prediction Using Manifold Learning
应对化学动力学中的“维数诅咒”:利用流形学习预测复杂化学反应
- 批准号:
2227112 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Standard Grant
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2143159 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Continuing Grant
Chemical kinetics of formaldehyde in indoor air
室内空气中甲醛的化学动力学
- 批准号:
563225-2021 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
University Undergraduate Student Research Awards