Automated Presurgical Language Mapping via Deep Learning for Multimodal Brain Connectivity
通过深度学习进行自动术前语言映射以实现多模式大脑连接
基本信息
- 批准号:10286181
- 负责人:
- 金额:$ 22.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAnesthesia proceduresAphasiaAreaBehavioral ParadigmBrainBrain NeoplasmsBrain regionClassificationClinicalCognitiveCollectionComplementComplexComputational algorithmConsumptionCoupledDataDiagnosisDiffusionEquipmentEvaluationExcisionExperimental DesignsFunctional Magnetic Resonance ImagingGoalsGoldGrainGraphHospitalsImpairmentIndividualJointsLanguageLeadLearningLesionLinkLogistic RegressionsMagnetic Resonance ImagingMapsMethodsModalityMonitorMorbidity - disease rateMotorNetwork-basedNeurocognitiveNeuronal PlasticityNeurosurgeonOperative Surgical ProceduresOutcomePathway interactionsPatient-Focused OutcomesPatientsPatternPostoperative PeriodPrimary Brain NeoplasmsPropertyPublic HealthQuality of CareQuality of lifeResearchRestRiskSeedsSleepStructureSupervisionSurvival RateSystemTherapeuticTimeTrainingTreatment outcomeUnited StatesWorkawakebasecare costscohortcommon treatmentcortex mappingdeep learningdeep neural networkdesignexperienceimaging modalityimprovedindependent component analysisinnovationmachine learning algorithmmultilayer perceptronmultimodalityneural networkneurosurgerypatient populationpredictive modelingpreservationprognostic valuesuccesstooltumorwhite matter
项目摘要
Project Summary/Abstract
Approximately 100,000 people in the United States are diagnosed with a primary brain tumor each year. Neu-
rosurgery remains the first and most common therapeutic option for these patients with outcomes linked to the
extent of tumor resection. However, larger resections also increase the risk for postoperative deficits, particularly
in the motor and language areas of the eloquent cortex. Task fMRI (t-fMRI) has emerged as a powerful nonin-
vasive tool for preoperative mapping, but these acquisitions are lengthy and cognitively demanding for patients.
Moreover, t-fMRI is unreliable if the patient cannot perform the tasks while in the scanner. Our long-term goal is
to develop an automated platform for reliable eloquent cortex mapping across a broad patient cohort that comple-
ments the existing clinical workflow. The overall objective of this proposal is to design and validate new machine
learning algorithms that leverage the complementary strengths of resting-state fMRI (rs-fMRI) and diffusion MRI
(d-MRI), which are both passive modalities and easy to acquire. Our central hypothesis is that the combined
structural-functional connectivity information in these modalities will enable us to localize language functionality
in patients with brain tumors. Our innovative strategy uses recent advancements in deep learning to capture com-
plex interactions in the rs-fMRI and d-MRI data that collectively define the language areas. We will evaluate our
hypothesis via two specific aims. In Aim 1 we will develop a graph neural network (GNN) that employs specialized
convolutional filters to capture topological properties of the connectivity data across multiple scales. Our GNN
will be trained in a supervised fashion and evaluated against t-fMRI activations and intraoperative electrocortical
stimulation. In Aim 2 we will conduct an exploratory analysis to retrospectively link our GNN predictions to post-
operative changes in language functionality. Namely, we hypothesize that patients for whom the surgical path
intersects our GNN predictions will experience greater deficits across fine-grained language subdomains. We will
also assess the prognostic value of our GNN predictions, as compared to other clinical factors. We anticipate the
proposed research will have a transformative impact on surgical planning by helping neurosurgeons to plan more
targeted and safer surgeries, thus improving patient outcomes and overall quality of care.
项目总结/摘要
在美国,每年约有10万人被诊断患有原发性脑肿瘤。Neu-
整形外科仍然是这些患者的首选和最常见的治疗选择,其结果与
肿瘤切除范围。然而,较大的切除也增加了术后缺陷的风险,特别是
在运动和语言区域的功能皮层。任务功能磁共振成像(t-fMRI)已成为一个强大的非线性,
这是一种用于术前标测的有创工具,但这些采集时间长,对患者的认知要求高。
此外,如果患者在扫描仪中无法执行任务,t-fMRI是不可靠的。我们的长期目标是
开发一个自动化平台,用于在广泛的患者队列中进行可靠的功能皮层映射,
补充现有的临床工作流程。本提案的总体目标是设计和验证新机器
利用静息态功能磁共振成像(rs-fMRI)和扩散磁共振成像(diffusion MRI)的互补优势的学习算法
(d-MRI),其均为被动模态且易于获取。我们的核心假设是,
这些模态中的结构-功能连接信息将使我们能够定位语言功能
在脑瘤患者中。我们的创新策略使用深度学习的最新进展来捕获COM。
rs-fMRI和d-MRI数据中的复杂相互作用共同定义了语言区域。我们将评估我们的
通过两个具体目标的假设。在目标1中,我们将开发一个图神经网络(GNN),
卷积滤波器来捕获跨多个尺度的连接数据的拓扑特性。我们的GNN
将在监督下接受培训,并根据t-fMRI激活和术中皮层电图进行评估。
刺激.在目标2中,我们将进行探索性分析,回顾性地将我们的GNN预测与后
语言功能的操作性变化。也就是说,我们假设,
我们的GNN预测将在细粒度语言子域中遇到更大的缺陷。我们将
与其他临床因素相比,我们还评估了GNN预测的预后价值。我们预计
拟议的研究将通过帮助神经外科医生计划更多的手术计划,
有针对性和更安全的手术,从而改善患者的治疗效果和整体护理质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Archana Venkataraman其他文献
Archana Venkataraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Archana Venkataraman', 18)}}的其他基金
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 22.14万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.14万 - 项目类别:
Research Grant