A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes

数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架

基本信息

项目摘要

Project Summary/Abstract Autism Spectrum Disorder (ASD) can be viewed through three complementary lenses: neurologically, it is linked to distributed changes in brain structure, function, and connectivity; biologically, it is associated with genome-wide mutations across multiple pathways; and clinically, it manifests as a diverse spectrum of behavioral and cogni- tive impairments. Despite this richness, treatment options for ASD are based on coarse diagnostics and target a few specific symptoms, such as social awareness, irritability, and depression. As a result, they have varied, and often limited, efficacy across patients. Taken together, next-generation therapeutics for ASD will crucially depend on our ability to bridge its neurological, biological, and clinical viewpoints for personalized intervention. Imaging-genetics is an emerging field that attempts to link neuroimaging features with genetic variants. How- ever, most methods focus on a restricted set of biomarkers, and they do not account for clinical phenotype, both of which provide an incomplete picture of the impacted processes. Our long-term goal is to develop a modu- lar platform that fuses multimodal neuroimaging and multi-omics data to unravel the complex etiology of ASD. The overall objective of this proposal is to develop and validate interpretable deep learning models to combine genome-wide variants with whole-brain structural and functional MRI data. Our innovative strategy is to use biologically-informed neural network architectures to project each of the modalities to a shared latent space that is simultaneously predictive of patient-level clinical phenotype. This unique formulation can easily accommodate missing data modalities, thus maximally utilizing all of the available information. We will devise, implement, vali- date, and disseminate our model via four specific aims. In Aim 1 we will develop a graph neural network, whose connections mimic a well-known gene ontology. Hierarchical pooling operations will capture the information flow through the network, while an attention layer will learn the discriminative biological pathways associated with the phenotype. In Aim 2 we will develop and integrate a Bayesian feature selection procedure to identify ROI-based neuroimaging biomarkers and a matrix autoencoder to extract discriminative functional subnetworks from brain connectivity data. In Aim 3 we will use the fused imaging and genetic architectures to uncover the neural and biological bases underlying the observed clinical heterogeneity of ASD. Finally, in Aim 4 we will package and dis- seminate our model as a user-friendly tool for the broader research community. We anticipate the proposed work will have a transformative impact on ASD research by allowing us to develop refined diagnostic instruments and on the field of imaging-genetics by providing a new approach for multimodal biomarker discovery.
项目总结/摘要 自闭症谱系障碍(ASD)可以通过三个互补的镜头来看待:神经学上,它与 大脑结构、功能和连通性的分布变化;在生物学上,它与全基因组相关。 在临床上,它表现为行为和认知的多样性, 情感障碍尽管如此丰富,ASD的治疗选择仍基于粗略的诊断和目标 一些特定的症状,如社会意识,易怒和抑郁。因此,它们各不相同, 而且通常是有限的,对患者的有效性。总之,下一代ASD治疗方法将至关重要, 这取决于我们将神经学、生物学和临床观点联系起来进行个性化干预的能力。 成像遗传学是一个新兴的领域,试图将神经影像学特征与遗传变异联系起来。怎么-- 以往,大多数方法集中于一组有限的生物标志物,并且它们不考虑临床表型, 其中提供了受影响流程的不完整情况。我们的长期目标是发展现代化的... 更大的平台,融合多模态神经成像和多组学数据,以揭示ASD的复杂病因。 该提案的总体目标是开发和验证可解释的深度学习模型,以便将联合收割机 全基因组变异与全脑结构和功能MRI数据。我们的创新战略是利用 生物学上知情的神经网络架构,以将每种模态投射到共享的潜在空间, 同时预测患者水平的临床表型。这种独特的配方可以很容易地适应 缺失的数据模式,从而最大限度地利用所有可用信息。我们将设计,实施,价值- 日期,并通过四个具体目标传播我们的模型。在目标1中,我们将开发一个图神经网络,其 连接模仿一个众所周知的基因本体。分层池操作将捕获信息流 通过网络,而注意力层将学习与神经网络相关联的区别性生物途径。 表型在目标2中,我们将开发和集成贝叶斯特征选择程序,以识别基于ROI的 神经成像生物标志物和矩阵自动编码器,用于从大脑中提取区分性功能子网络 连接数据。在目标3中,我们将使用融合的成像和遗传架构来揭示神经和 ASD临床异质性的生物学基础。最后,在目标4中,我们将打包并显示- 将我们的模型作为更广泛的研究社区的用户友好工具。我们预计, 将通过允许我们开发改进的诊断仪器,对ASD研究产生变革性影响 以及通过提供用于多模态生物标志物发现的新方法而在成像遗传学领域上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Archana Venkataraman其他文献

Archana Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Archana Venkataraman', 18)}}的其他基金

Automated Presurgical Language Mapping via Deep Learning for Multimodal Brain Connectivity
通过深度学习进行自动术前语言映射以实现多模式大脑连接
  • 批准号:
    10286181
  • 财政年份:
    2021
  • 资助金额:
    $ 46.95万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了