Structural determinants of lipid modulation of ligand-gated ion channels
配体门控离子通道脂质调节的结构决定因素
基本信息
- 批准号:10285984
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAnestheticsAntiepileptic AgentsBindingBinding SitesBiochemicalBiological ModelsChargeChemicalsChemistryDataDependenceDiseaseEnvironmentEpilepsyErwiniaFatty AcidsFoundationsFunctional disorderGasesGoalsHeadHomologous GeneHydrophobicityIon Channel GatingLabelLearningLengthLigandsLightLipid BindingLipidsLiposomesMass Spectrum AnalysisMeasuresMediatingMembraneModificationMolecularMutagenesisNeurodegenerative DisordersPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhospholipid InteractionPhospholipidsPhotoaffinity LabelsPlayPositioning AttributeProteinsReagentResearchResearch PersonnelResearch Project GrantsRoleSiteSpecificitySterolsStructural ModelsStructureSynaptic TransmissionSystemTailTechniquesTestingWorkaddictionanalogbiophysical techniquesdesensitizationdesignfield studyion mobilitymethanethiosulfonatemutantneurosteroidsnovelpatch clampreceptorreconstitutionsmall moleculesmall molecule therapeuticsstoichiometry
项目摘要
PROJECY SUMMARY/ ABSTRACT
Pentameric ligand-gated ion channels (pLGICs) play a primary role in synaptic transmission, and are modulated
by a variety of endogenous molecules, including phospholipids, sterols, and fatty acids. pLGICs are also
modulated by small molecule therapeutics (e.g. anesthetics and anti-epileptics). The structural mechanism by
which phospholipids modulate pLGICs is poorly understood. Anionic phospholipids are allosteric modulators of
mammalian pLGICs, and structural studies suggest that phospholipid binding sites overlaps with binding sites of
small molecules such as neuroteroids. The goal of this project is to investigate the hypothesis that lipids and
certain allosteric modulating drugs bind to specific sites on pLGICs, and that these drugs induce their modulatory
effect through a positive, or negative, effect on lipid binding. To accomplish this goal, I will use a combination of
cutting edge techniques, including native mass spectrometry (MS), covalent chemical modification, and patch-
clamp recordings of giant liposomes of defined lipid composition. To apply these techniques, I will use the
prototypical prokaryotic pLGIC, Erwinia ligand-gated ion channel (ELIC), as a tractable model system. ELIC is
an ideal system for MS and readily permits expression and purification of mutant proteins for biochemical and
reconstitution studies. Work in the Cheng lab has measured direct binding of phospholipids to ELIC by MS, and
demonstrated that specific binding of anionic phospholipids reduces desensitization in ELIC. Building upon this
work, this research project will address two aims. The first is to determine the specificity and sites of phospholipid
binding that mediate their modulatory effects on ELIC. I hypothesize that phospholipid head group charge
determines the lipid binding affinity to ELIC, but that the structure of the hydrophobic tail (e.g. length and position
of unsaturations) is the critical determinant of the native modulatory effect. Phospholipid binding affinity and
stoichiometry will be determined by MS. The functionally-relevant binding sites for phospholipids will be
determined using mutagenesis and chemical modification with methanethiosulfonate (MTS) reagents. The second
aim is to elucidate the interaction between phospholipids and allosterically modulating drugs in relation to ELIC
binding and modulation. Within this aim I will determine the sites of binding of allopregnanalone (alloP) in ELIC
using photo-affinity labels, and then examine the effect this labeling (or non-covalent binding in MS) has on
phospholipid binding. Preliminary results indicate that alloP enhances ELIC desensitization, and I hypothesize
that alloP induces its pharmacologic effect by competing for binding of sites otherwise occupied by
phospholipids. Functional studies in liposomes will determine whether alloP competitively or non-competitively
antagonize anionic phospholipid effect. This work will be foundational in understanding the modulation of
pLGICs by relevant small molecules. The experimental framework developed within this proposal will be critical
in understanding the mechanism of channel modulation by other bioactive lipids and small molecule modulators.
PROJECY摘要/摘要
五聚合配体门控离子通道(PLGICS)在突触传播中起主要作用,并被调制
通过多种内源分子,包括磷脂,固醇和脂肪酸。 PLGICS也是
由小分子疗法(例如麻醉和抗癫痫病)调节。结构机制
哪种磷脂调节PLGIC的理解很少。阴离子磷脂是变构调节剂
哺乳动物PLGIC和结构研究表明,磷脂结合位点与结合位点重叠
小分子,例如神经类动物。该项目的目的是研究脂质和
某些变构调节药物与PLGIC上的特定位点结合,并且这些药物诱导其调节
通过对脂质结合的阳性或负面影响的影响。为了实现这一目标,我将使用
尖端技术,包括天然质谱法(MS),共价化学修饰和斑块
定义脂质组成的巨型脂质体的夹具记录。要应用这些技术,我将使用
典型的原型原核PLGIC,Erwinia配体门控离子通道(ELIC)作为可拖动的模型系统。 Elic是
MS的理想系统,很容易允许表达和纯化突变蛋白的生化和
重建研究。 Cheng Lab中的工作测量了MS的磷脂与Elic的直接结合,
表明阴离子磷脂的特异性结合减少了ELIC中的脱敏。以此为基础
工作,该研究项目将解决两个目标。首先是确定磷脂的特异性和位点
结合介导其调节作用的效果。我假设磷脂头组电荷
确定脂质结合与Elic的亲和力,但疏水尾巴的结构(例如长度和位置
不饱和)是天然调节作用的关键决定因素。磷脂结合亲和力
化学计量法将由MS确定。磷脂与功能相关的结合位点将是
使用甲烷硫酸盐(MTS)试剂使用诱变和化学修饰确定。第二个
目的是阐明磷脂和相对于ELIC的变构调节药物之间的相互作用
结合和调制。在此目标中,我将确定Alopregnanalone(Allop)的结合位点
使用照片亲和力标签,然后检查该标签(或MS中非共价结合)的影响
磷脂结合。初步结果表明Allop增强了敏感性,我假设
Allop通过竞争与其他人所占用的地点的结合来诱导其药理作用
磷脂。脂质体中的功能研究将确定竞争性还是非功能性研究
拮抗阴离子磷脂效应。这项工作将是理解调制的基础
相关小分子的PLGIC。本提案中开发的实验框架将是至关重要的
在理解其他生物活性脂质和小分子调节剂的通道调节机理时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John T Petroff 其他文献
John T Petroff 的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John T Petroff ', 18)}}的其他基金
Structural determinants of lipid modulation of ligand-gated ion channels
配体门控离子通道脂质调节的结构决定因素
- 批准号:
10471051 - 财政年份:2020
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别: