Improving Telerehabilitation in Pediatric Cerebral Palsy Using Machine Learning and Social Robots

使用机器学习和社交机器人改善小儿脑瘫的远程康复

基本信息

  • 批准号:
    10285983
  • 负责人:
  • 金额:
    $ 4.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-04-21
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Cerebral palsy (CP) is the most common motor disorder in young children. There is no cure, but disciplined rehabilitation can improve outcomes. A critical component of rehabilitation is continuous assessment of patient function. Patients in rural areas can have difficulty accessing care. Telerehabilitation provides an option to extend access to care, but has limitations. The foci of this project are 1) understanding how a social robot physically co-located with the patient during a telerehabilitation assessment alters the activity by the patient, potentially leading to changes in the ability of the clinician to perform assessment and 2) whether computer vision and machine learning can be used to assess patients. Together, these two complementary goals will show a path forward for remote treatment of patients with CP and similar conditions. The effect of using a social robot in telerehabilitation will be examined through a study where pediatric CP subjects and typical subjects interact with a remote operator in three conditions: face-to-face, over traditional telepresence, and over telepresence with a social robot present. Direct changes in the level of subject interaction and compliance will be measured through surveys and video coding. The effect on quality of assessment will be measured by presenting expert therapists with first-person video recordings from each condition and comparing the variance of their grading for each condition. To truly realize the promise of using remote assessment to extend care, automated grading of assessments is necessary. To evaluate the feasibility of this, videos of children with various levels of upper extremity function along with their box and block scores and clinician ratings will be used to train two algorithms. Both algorithms will begin by using off the shelf convolutional neural network based tools to extract the pose of the subjects. The first algorithm will be hand designed. It will learn how to weight known metrics of motion, such as movement speed, time to maximum speed, and number of speed peaks, using principal component analysis and a naive Gaussian classifier. The second algorithm will use a custom neural network operating directly on the time-series pose data. Both algorithms will attempt to, given video of a novel subject, predict the level of function as would be predicted by a therapist. Both algorithms will be analyzed to discover their underlying decision-making philosophies, which may give insight into what parameters of motion clearly differentiate levels of function. The project will be done in the context of a pre-doctoral training plan. The plan focuses on developing an independent researcher at the intersection of robotics and rehabilitation science. This will be done within Mechanical Engineering, Physical Medicine and Rehabilitation, and the General Robotics, Automation, Sensing, and Perception (GRASP) laboratory at the University of Pennsylvania with additional mentorship and experience at the Children's Hospital of Philadelphia.
项目总结/摘要 脑性瘫痪(CP)是幼儿最常见的运动障碍。无药可救,但要有纪律 康复可以改善结果。康复的一个关键组成部分是对患者的持续评估 功能农村地区的患者可能难以获得护理。远程康复提供了一种扩展选项 获得护理,但有局限性。该项目的重点是1)了解社交机器人如何在物理上 在远程康复评估期间与患者共处一处改变了患者的活动, 导致临床医生进行评估的能力发生变化,以及2)计算机视觉和 机器学习可用于评估患者。这两个相辅相成的目标将共同指明一条道路 远程治疗患有CP和类似疾病的患者。 将通过一项研究来检查在远程康复中使用社交机器人的效果, 受试者和典型受试者在三种情况下与远程操作员进行交互:面对面, 远程呈现,以及与社交机器人在场的远程呈现。受试者交互水平的直接变化 并将通过调查和视频编码来衡量遵守情况。对评估质量的影响将是 通过向专家治疗师展示每种情况的第一人称视频记录并比较 他们对每种条件的评分的方差。 为了真正实现使用远程评估扩展护理的承诺, 是必要的.为了评估这一方法的可行性,对不同上肢功能水平的儿童进行了录像, 沿着其框和块评分以及临床医生评级将用于训练两种算法。这两种算法将 开始通过使用现成的基于卷积神经网络的工具来提取对象的姿态。第一个 算法将手工设计。它将学习如何加权已知的运动指标,如运动速度, 最大速度的时间和速度峰值的数量,使用主成分分析和朴素高斯 分类器。第二种算法将使用直接对时间序列姿态数据进行操作的自定义神经网络。 这两种算法都将尝试,给定一个新的主题的视频,预测功能的水平,如将由 心理医生这两种算法将被分析,以发现其潜在的决策哲学,这可能 让我们深入了解什么样的运动参数可以清楚地区分功能水平。 该项目将在博士前培训计划的背景下进行。该计划的重点是发展 他是机器人和康复科学交叉领域的独立研究员。这将在 机械工程,物理医学和康复,以及一般机器人,自动化,传感, 和感知(GRASP)实验室在宾夕法尼亚大学与额外的指导和经验 在费城儿童医院

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The design of Lil'Flo, a socially assistive robot for upper extremity motor assessment and rehabilitation in the community via telepresence.
Feasibility and Acceptability of Remote Neuromotor Rehabilitation Interactions Using Social Robot Augmented Telepresence: A Case Study.
使用社交机器人增强远程呈现进行远程神经运动康复互动的可行性和可接受性:案例研究。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J Sobrepera其他文献

Michael J Sobrepera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了