TERM: a novel mutagenesis paradigm enabling streamlined saturation forward genetics in vertebrate models
术语:一种新的诱变范例,可在脊椎动物模型中简化饱和正向遗传学
基本信息
- 批准号:10288603
- 负责人:
- 金额:$ 24.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAnimal ModelBackBacteriaBiological AssayBiologyCRISPR/Cas technologyCell Culture SystemCellsCodeCollectionComplexCultured CellsDNADNA Binding DomainDiploidyDiseaseDrug TargetingEligibility DeterminationEmbryoEnzymesExhibitsGenerationsGenesGenetic DiseasesGenetic ResearchGenetic ScreeningGenetic studyGenomeGenomic DNAGenomic SegmentGenomicsGenotypeGerm CellsIn VitroInbreedingIndividualMammalian CellMammalsMapsMeasuresMedicineMethodologyMethodsModelingModern MedicineModernizationModificationMutagenesisMutationNatureOutcomePerformancePhenotypePigmentation physiologic functionPlaguePositioning AttributeProcessRandomizedRapid screeningReactionRefractoryReporterResearch PersonnelResearch TechnicsSiteSystemTechniquesTechnologyTertiary Protein StructureTestingTimeLineToxic effectTransgenesVariantWritingZebrafishbasedesignembryo cellflexibilityforward geneticsgene functiongenetic analysisgenetic approachgenome editinggenome-widegenomic locusin vivointerestmutantnew therapeutic targetnext generationnovelnovel therapeuticsnucleaseoff-target siteprocess optimizationrecruitreverse geneticsscreeningtranscription activator-like effector nucleasesvirtualwhole genome
项目摘要
PROJECT SUMMARY
Forward genetic screening is a remarkably powerful research technique, but has been widely abandoned.
Instead, modern genetics research relies heavily on reverse genetics approaches, revolutionized and made
more accessible via technological advances such as CRISPR/Cas9. As the vast majority of mutations are
recessive, CRISPR/Cas9 has enabled researchers to rapidly produce mutant phenotypes in reverse genetic
studies by simultaneously disrupting both alleles of a known gene of interest. By contrast, the random
mutagenesis paradigms used for forward genetic screening have remained relatively unchanged for the past
40 years, and still rely on generations of inbreeding to homozygose mutant alleles in animal models. No
mutagenesis technique has ever been developed that is both random and biallelic. Here we propose to
leverage modern genome-editing approaches to efficiently introduce mutations that are both random and
biallelic, revolutionizing the field of forward genetics by supporting a new generation of unbiased interrogations
of gene function across entire genomes.
Our proposed paradigm achieves random biallelic mutagenesis using a two-step process. First, a Prime Editor
enzyme (PE) stochastically reprograms the DNA-binding domain of a single-chain TALEN (scTALEN). Prime
editing occurs cell-independently; thus a culture with millions of cells would generate millions of unique DNA-
binding domains, each recruiting the scTALEN to a distinct genomic target site in each individual cell. Second,
the scTALEN induces biallelic mutations at its newly programmed target site. The end result is a large
collection of cells or embryos that each harbor unique biallelic mutations which can then be screened for
phenotypes of interest. Most importantly, this process can be deployed in virtually any model organism from
bacteria to mammals. Using the larval zebrafish system, we will illustrate how this approach shortens the
mutagenesis timeline for forward genetic screening from approximately one year down to just a few weeks. We
will develop our proposed paradigm, called TERM (TALEN Editing for Random Mutagenesis) by: 1) evaluating
biallelic mutagenesis efficiency and toxicity of different scTALEN variants; 2) optimizing the prime-editing
reaction to achieve efficient randomization of scTALEN targets; and 3) using TERM to perform forward genetic
screens in vitro and in vivo.
By breaking down the longstanding technical barriers to saturation mutagenesis screening, TERM will open
doors to one of the most powerful techniques in genetic research. Specifically, our approach will help to
characterize the ~80% of vertebrate genes that remain understudied, counteract longstanding bias towards
studying coding regions, facilitate drug target identification and highlight new therapeutic targets for disease
treatments, and expand genome-wide genetic analysis to models beyond cell-culture systems.
项目摘要
正向遗传筛选是一种非常强大的研究技术,但已被广泛放弃。
相反,现代遗传学研究在很大程度上依赖于反向遗传学方法,
通过CRISPR/Cas9等技术进步更容易获得。因为绝大多数的突变
CRISPR/Cas9使研究人员能够在反向遗传中快速产生突变表型,
通过同时破坏已知感兴趣基因的两个等位基因进行研究。相比之下,
用于正向遗传筛选的诱变范例在过去保持相对不变
40年来,仍然依赖于几代近亲繁殖来使动物模型中的突变等位基因纯合。没有
已经开发了随机和双等位基因的诱变技术。在此,我们建议
利用现代基因组编辑方法,有效地引入随机突变,
双等位基因,通过支持新一代无偏见的询问,
在整个基因组中的基因功能。
我们提出的范例使用两步过程实现随机双等位基因诱变。第一,Prime Editor
酶(PE)stochemical重编程单链TALEN(scTALEN)的DNA结合结构域。Prime
编辑是独立于细胞发生的;因此,具有数百万个细胞的培养物将产生数百万个独特的DNA,
结合结构域,每个结合结构域将scTALEN募集到每个个体细胞中的不同基因组靶位点。第二、
scTALEN在其新编程的靶位点诱导双等位基因突变。最终的结果是一个巨大的
细胞或胚胎的集合,每个细胞或胚胎都具有独特的双等位基因突变,然后可以对其进行筛选
感兴趣的表型。最重要的是,这个过程可以部署在几乎任何模式生物,
细菌对哺乳动物我们将使用幼斑马鱼系统来说明这种方法如何缩短
用于正向遗传筛选的诱变时间轴从大约一年缩短到仅仅几周。我们
我将开发我们提出的范例,称为TERM(随机突变的TALEN编辑):1)评估
不同scTALEN变体的双等位基因诱变效率和毒性; 2)优化引物编辑
反应,以实现scTALEN靶的有效随机化;和3)使用TERM进行正向遗传
在体外和体内筛选。
通过打破长期存在的饱和诱变筛选技术障碍,$TERM将打开
基因研究中最强大的技术之一的大门。具体而言,我们的方法将有助于
描述了约80%的脊椎动物基因仍然研究不足,抵消了长期存在的偏见,
研究编码区,促进药物靶点识别,并为疾病提供新的治疗靶点
治疗,并将全基因组遗传分析扩展到细胞培养系统之外的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY MUMM其他文献
JEFFREY MUMM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY MUMM', 18)}}的其他基金
Innate immune system regulation of retinal regeneration
先天免疫系统对视网膜再生的调节
- 批准号:
10444471 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Innate immune system regulation of retinal regeneration
先天免疫系统对视网膜再生的调节
- 批准号:
10707048 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
TERM: a novel mutagenesis paradigm enabling streamlined saturation forward genetics in vertebrate models
术语:一种新的诱变范例,可在脊椎动物模型中简化饱和正向遗传学
- 批准号:
10477464 - 财政年份:2021
- 资助金额:
$ 24.56万 - 项目类别:
Intersectional transgenic targeting of discrete neuronal and glial subtypes
离散神经元和神经胶质亚型的交叉转基因靶向
- 批准号:
10259997 - 财政年份:2021
- 资助金额:
$ 24.56万 - 项目类别:
Improved Animal Models for Cell-Specific Regenerative Medicine Paradigms
细胞特异性再生医学范式的改进动物模型
- 批准号:
9104636 - 财政年份:2016
- 资助金额:
$ 24.56万 - 项目类别:
Improved Animal Models for Cell-Specific Regenerative Medicine Paradigms
细胞特异性再生医学范式的改进动物模型
- 批准号:
9206193 - 财政年份:2016
- 资助金额:
$ 24.56万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8771054 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8719118 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8854178 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
9127241 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 24.56万 - 项目类别: