Dual Energy CT-enabled Asymptomatic Pulmonary Embolism Detection on Non-contrast CT
双能 CT 平扫无症状肺栓塞检测
基本信息
- 批准号:10287287
- 负责人:
- 金额:$ 44.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAlgorithmsAmericanAppearanceBenignBiologicalBrain hemorrhageCalciumChestClinicalDataData SetDetectionDiagnosisEmbolismEmerging TechnologiesEnsureGenerationsGoalsHardnessHemorrhageHumanImageInheritedIodineLabelLocationLow PrevalenceLung diseasesMalignant - descriptorManualsModelingNoiseOutcomePatientsPerformancePhysiciansPopulationPrevalenceProbabilityPulmonary EmbolismReaderReadingRecurrenceScanningSignal TransductionSpecificityTestingTextureTrainingValidationX-Ray Computed Tomographyalgorithm developmentalgorithm trainingattenuationbasecohortcollegecontrast enhancedcontrast imagingcost effectivenessdeep learningdeep learning algorithmdeep neural networkdetectordigitalimage reconstructionimprovedmortalitypreventradiologistscreeningsupervised learningthrombolysisvalidation studiesvirtual
项目摘要
Project Summary
Asymptomatic pulmonary embolism (PE) are often incidentally discovered from contrast computed tomography
(CT) scans that do not target PE. It has a mean prevalence of 2.6% among patients and associated with increased
mortality rate and recurrence of PE. Currently non-contrast CT are not read by radiologists for PE, because the
hyperintensity signal of thrombolysis on NCCT is weak. Hence, around 2.6% of the patients with NCCT can have
asymptomatic PE but are not diagnosed at all, which is potentially a large population.
We propose a deep learning-based automatic PE detection algorithm for single-energy NCCT to improve the
cost-effectiveness to discover asymptomatic PE from NCCT. The algorithm will be used to identify patients with
higher probability of PE and call for human reading or contrast CT scans. A major challenge is training data
accumulation due to the relatively low prevalence of asymptomatic PE and hardness of reading NCCT. To
overcome this challenge, we propose to utilize dual energy CT (DECT), which is becoming routinely used for PE
diagnosis, to generate virtual non-contrast (VNC) images as training images. We propose to use deep learning
algorithm for the VNC generation to fill the image quality gap between VNC images and real single-energy NCCT,
which ensures that our PE detection algorithm trained on VNC images can be readily applied to real NCCT.
The expected outcome of the project is (1) a deep learning algorithm to generate realistic VNC images from
contrast DECT; (2) a deep learning algorithm to screen PE from NCCT with high sensitivity.
项目概要
无症状肺栓塞 (PE) 常常是通过造影计算机断层扫描偶然发现的
(CT) 扫描不针对 PE。它在患者中的平均患病率为 2.6%,并且与增加
PE 的死亡率和复发率。目前,放射科医生不会通过非对比 CT 来判断 PE,因为
NCCT溶栓高信号弱。因此,大约 2.6% 的 NCCT 患者可能患有
无症状肺栓塞但根本没有被诊断出来,这可能是一个很大的人群。
我们提出了一种基于深度学习的单能量 NCCT 自动 PE 检测算法,以提高
通过 NCCT 发现无症状 PE 的成本效益。该算法将用于识别患有以下疾病的患者
PE 的可能性较高,需要进行人工读数或对比 CT 扫描。一个主要挑战是训练数据
由于无症状 PE 的患病率相对较低以及 NCCT 的阅读难度而导致积累。到
为了克服这一挑战,我们建议利用双能 CT (DECT),它已成为 PE 的常规使用
诊断,生成虚拟非对比(VNC)图像作为训练图像。我们建议使用深度学习
VNC生成算法,填补VNC图像与真实单能NCCT之间的图像质量差距,
这确保了我们在 VNC 图像上训练的 PE 检测算法可以轻松应用于真实的 NCCT。
该项目的预期成果是 (1) 一种深度学习算法,用于生成真实的 VNC 图像
对比DECT; (2)深度学习算法从NCCT中高灵敏度筛选PE。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dufan Wu其他文献
Dufan Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 44.87万 - 项目类别:
Operating Grants














{{item.name}}会员




