Data-driven Head Motion Correction in PET Imaging Using Deep Learning

使用深度学习在 PET 成像中进行数据驱动的头部运动校正

基本信息

  • 批准号:
    10288215
  • 负责人:
  • 金额:
    $ 20.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract In the parent R21, we are developing deep learning (DL)-based head motion estimation models, based on the PET raw data, to track head motion during a PET scan in real time without the need for external motion sensors. In this supplement, we will pursue the development of deep learning neural networks dedicated to estimating motion for Alzheimer's disease (AD) subjects. Brain PET imaging is highly sensitive to head motion. Problems due to head motion are exacerbated by the long duration of the scans, with scan times commonly over one hour, and by the small scale of disease-focused regions of interest, e.g., hippocampus, for AD subjects. The Yale PET Center recently acquired a set of AD PET data that includes AD patients under treatment using CT1812, a first-in-class drug that displaces Aβ oligomers bound to neuronal receptors at synapses. In the CT1812 study, AD patients underwent baseline and post-treatment scans using 11C-UCB-J and 18F-FDG. The longitudinal nature of this study requires the detection of small-scale changes in small-scale AD-related brain areas over time within the same individual. Existing Polaris Vicra motion tracking has a 5-10% failure rate, therefore, there is a compelling need to develop accurate head motion correction for this study. In this administrative supplement, we will pursue the development of DL neural networks dedicated to estimating motion for the AD PET dataset acquired under the CT1812 study, and perform rigorous evaluations. In Aim 1, we will develop a novel DL methodology to perform motion correction, which includes: (1) a DL model to generate synthetic AD PET images based on rapid back-projection images for every 1-sec frame, and (2) a second DL model to estimate the rigid motion between two synthetic AD PET images. We will evaluate our motion estimation models using the data from the twenty subjects acquired in the CT1812 study against Polaris Vicra motion tracking. In Aim 2, we will perform kinetic modeling analysis for all the CT1812 studies for both tracers. Dynamic motion corrected reconstruction will be performed using the DL estimated motion correction (from Aim 1) and be compared to reconstruction using Vicra-based motion correction. We will correlate the changes in synaptic density (11C-UCB-J), glucose metabolism (18F-FDG) and cognitive function following CT1812 treatment. We hypothesize that our proposed DL-based approach will outperform the Vicra- based approach by reducing cross-subject variations within cohorts for any quantitative PET measure in both 11C-UCB-J and 18F-FDG tracers. We also hypothesize the DL-based approach will outperform Vicra by increasing absolute correlation coefficient value for any correlation between changes in PET measures and cognitive improvement.
项目总结/摘要 在父R21中,我们正在开发基于深度学习(DL)的头部运动估计模型,基于 PET原始数据,用于在PET扫描期间真实的实时跟踪头部运动,而无需外部运动 传感器.在本补充中,我们将致力于开发深度学习神经网络, 估计阿尔茨海默病(AD)受试者的运动。脑PET成像对头部运动高度敏感。 由于头部运动的问题由于扫描的长持续时间而加剧,扫描时间通常 超过一个小时,并且通过小规模的关注疾病的区域,例如,海马,用于AD 科目耶鲁大学PET中心最近获得了一组AD PET数据,其中包括AD患者, 使用CT 1812治疗,这是一种一流的药物,可在24小时内置换与神经元受体结合的Aβ寡聚体。 突触在CT 1812研究中,AD患者使用11 C-UCB-J进行基线和治疗后扫描 18F-FDG这项研究的纵向性质要求检测小规模的变化, 在同一个人体内,随着时间的推移,与AD相关的大脑区域。现有的北极星Vicra运动跟踪有5-10% 失败率,因此,迫切需要为这项研究开发准确的头部运动校正。在 在这份行政补充文件中,我们将致力于开发DL神经网络, CT 1812研究下采集的AD PET数据集的运动,并进行严格的评估。在目标1中, 我们将开发一种新的DL方法来执行运动校正,其包括:(1)DL模型, 基于每1秒帧的快速反投影图像生成合成AD PET图像,以及(2) 第二DL模型,用于估计两个合成AD PET图像之间的刚性运动。我们将评估我们的 运动估计模型使用来自CT 1812研究中获得的20名受试者的数据, 北极星维克拉运动跟踪。在目标2中,我们将对所有CT 1812研究进行动力学建模分析, 两个追踪器将使用DL估计运动执行动态运动校正重建 校正(来自目标1),并与使用基于Vicra的运动校正的重建进行比较。我们将 将突触密度(11 C-UCB-J)、葡萄糖代谢(18 F-FDG)和认知功能的变化相关联 CT 1812治疗后。我们假设,我们提出的基于DL的方法将优于Vicra- 通过减少队列内任何定量PET测量的跨受试者变异, 11 C-UCB-J和18F-FDG示踪剂。我们还假设基于DL的方法将优于Vicra, 增加PET测量值变化之间任何相关性的绝对相关系数值, 认知改善

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yihuan Lu其他文献

Yihuan Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 20.45万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 20.45万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 20.45万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 20.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了