Automatic Multimodal Assessment of Pain in Dementia
痴呆症疼痛的自动多模式评估
基本信息
- 批准号:10288413
- 负责人:
- 金额:$ 34.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-16 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acute PainAddressAdultAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAreaBedsBehaviorBehavioralChildClinicalCodeCollaborationsCollectionComputer ModelsComputer Vision SystemsDataData CollectionDementiaDevelopmentDisadvantagedElderlyFaceFacial ExpressionFundingGoalsHead MovementsHumanImpairmentIndividualLong-Term CareLongitudinal cohortLongitudinal cohort studyLow Back PainMachine LearningMeasurementMeasuresMetadataMethodologyMethodsModalityModelingMorbidity - disease rateMovementNonverbal CommunicationPainPain MeasurementPain intensityPain managementParentsParticipantPatient CarePatientsPersonsPopulationPropertyProtocols documentationQuality of lifeRecording of previous eventsResearchResearch PersonnelSamplingSkilled Nursing FacilitiesStandardizationSystemTechniquesThinnessTimeTrainingVideo RecordingWorkaging populationbasechronic painclinically relevantdata sharingdesignexperienceimprovedmedical specialtiesmortalitymultimodalitypain modelparent grant
项目摘要
Project Summary/Abstract
Chronic and acute pain conditions increase with aging and with age-associated conditions, including Alzheimer's
disease and similar dementias, causing suffering, exacerbating diminished quality of life, and likely leading to
further morbidity and increased mortality. Understanding and treatment of pain is particularly challenging
among populations whose ability to communicate verbally may be impaired, among which patients with
Alzheimer's disease and related dementias are of particular importance if only because of the increased aging
population. A substantial body of research suggests that methods based on nonverbal indicators of pain yield
reliable and valid measurement of pain in patient with dementias. Some of this work has indicated that patients
with dementia may in fact be hyper-reactive to pain, rendering the pursuit of improved techniques for assessing
pain in the dementia population even more important. Existing techniques for assessing nonverbal indicators of
pain have several disadvantages which limit their utility. In particular, they require human observers, are
dependent on specialty training, can be laborious, and cannot be applied on a continuous basis. Advances in
computer vision and machine learning have the potential to overcome some of these shortcomings. Our “parent
proposal” project aims to develop advanced, automated computer-vision and machine-learning models for
assessing nonverbal aspects of pain in a longitudinal cohort study of people with low back pain. This supplement
proposal seeks to extend our work on the “parent grant”, which aims to “build a fully automatic, multimodal
(face, head, and body movement) system to measure the occurrence and intensity of low back pain from video”.
In this supplement project, these aims will be extended to older adults with dementia. We will refine the
principles discovered for pain assessment in the low back pain population, extend, and evaluate their application
in a sample of older adults with dementias in extended-care facilities.
Participants, long-term care residents with dementia, were video-recorded during a baseline state as they were
lying still on a bed or examination table and then as they underwent a standardized protocol of movements
designed to identify painful areas. Participants' face, head, and body movement will be used for the development
of automatic measures of the occurrence and intensity of pain. To do so, face, head, and body movement will be
automatically tracked using fully- automatic methods. The tracking results will be used to train end-to-end deep-
leaning based classifiers to automatically measure the occurrence and intensity of pain in older adults with
dementia. To investigate the validity of the proposed classifiers, we will compare automated measurement of
pain intensity to reliable and objective pain intensity coding. MANOVA will be used to quantify the relationship
between the individual modalities and their combination for the measurement of the occurrence and intensity of
pain in older adults with dementia.
项目总结/摘要
慢性和急性疼痛状况随着年龄的增长和与年龄相关的状况而增加,包括阿尔茨海默氏症
疾病和类似的痴呆症,造成痛苦,加剧生活质量下降,并可能导致
发病率和死亡率增加。对疼痛的理解和治疗尤其具有挑战性
在语言交流能力可能受损的人群中,
阿尔茨海默氏病和相关痴呆症是特别重要的,如果只是因为增加的老龄化,
人口大量研究表明,基于非语言疼痛指标的方法
痴呆患者疼痛的可靠和有效的测量。其中一些研究表明,
事实上,痴呆症患者可能对疼痛反应过度,因此寻求改进的评估技术,
疼痛在痴呆症人群中更为重要。评估非语言指标的现有技术
疼痛有几个限制其效用的缺点。特别是,它们需要人类观察者,
依赖于专业训练,可能是费力的,并且不能在连续的基础上应用。进展
计算机视觉和机器学习有可能克服其中一些缺点。我们的“父母
该项目旨在开发先进的自动化计算机视觉和机器学习模型,
在一项对腰痛患者的纵向队列研究中评估疼痛的非语言方面。这种补充剂
一项提案旨在扩大我们在“父母补助金”方面的工作,其目的是“建立一个全自动的、多模式的
(face头部和身体运动)系统来测量来自视频的腰痛的发生和强度”。
在这个补充项目中,这些目标将扩展到老年痴呆症患者。我们将完善
在腰痛人群中发现的疼痛评估原则,扩展并评估其应用
在老年痴呆症患者的样本中。
参与者是患有痴呆症的长期护理居民,他们在基线状态下进行视频记录,
他们静静地躺在床上或检查台上,然后接受标准化的运动方案,
用来识别疼痛部位参与者的面部,头部和身体运动将用于开发
自动测量疼痛的发生和强度。要做到这一点,面部,头部和身体的运动将是
使用全自动方法自动跟踪。跟踪结果将用于训练端到端深度-
基于学习的分类器自动测量老年人疼痛的发生和强度,
痴呆为了研究所提出的分类器的有效性,我们将比较自动测量的
疼痛强度的可靠和客观的疼痛强度编码。MANOVA将用于量化关系
的发生率和强度的测量,
老年痴呆症患者的疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zakia Hammal其他文献
Zakia Hammal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zakia Hammal', 18)}}的其他基金
Efficient and Cost-Effective Multimodal System for Pain Management in Low Back Pain
用于腰痛疼痛管理的高效且具有成本效益的多模式系统
- 批准号:
10319006 - 财政年份:2020
- 资助金额:
$ 34.47万 - 项目类别:
Efficient and Cost-Effective Multimodal System for Pain Management in Low Back Pain
用于腰痛疼痛管理的高效且具有成本效益的多模式系统
- 批准号:
9886461 - 财政年份:2020
- 资助金额:
$ 34.47万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.47万 - 项目类别:
Research Grant