Bayesian methods for cortical surface neuroimaging data
用于皮质表面神经影像数据的贝叶斯方法
基本信息
- 批准号:10289056
- 负责人:
- 金额:$ 36.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAgingAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAnusBase of the BrainBayesian AnalysisBayesian MethodBiological MarkersBrainClinicalClinical TrialsDataDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEnsureExhibitsFunctional Magnetic Resonance ImagingGoalsImageIndianaIndividualInterventionMagnetic Resonance ImagingMeasuresMethodsModelingNational Institute of Biomedical Imaging and BioengineeringPatientsPositron-Emission TomographyProcessRestStatistical ModelsSurfaceTestingTextureTherapeutic Clinical TrialUniversitiesUtahbaseclinical trial participantcohortcollaborative environmentmanmild cognitive impairmentneuroimagingparent grantprecision medicineprognostic modelscreening
项目摘要
PROJECT SUMMARY
Advanced Bayesian statistical methods for the analysis of functional magnetic resonance imaging (fMRI),
developed in parent grant R01EB027119, produce accurate measures of functional brain organization in
individual subjects. As a result, they are uniquely suited for advancing the development of fMRI-based brain
biomarkers for Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI). Accurate biomarkers are
needed for early diagnosis and for identification of clinical trial participants who are likely to exhibit sufficient
decline across the trial to adequately test the intervention. Functional MRI-based biomarkers may serve as an
inexpensive, non-invasive, and widely-available first-line screening measure before positron emission
tomography (PET) imaging is used. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in
2004 to develop and validate biomarkers for AD clinical trials. A principal goal of ADNI-3, the latest iteration of
ADNI, is to promote the development of diagnostic models and precision medicine approaches to identify
patients for therapeutic clinical trials, including the use of resting-state fMRI (rs-fMRI). In this supplement
project, we will apply the methods developed in the parent grant to extract features related to the topological
functional organization of the brain, functional connectivity, and texture of functional networks. These features
will be used to develop diagnostic and prognostic models to predict current disease status in ADNI-3.
Additionally, we will utilize the overlap between the ADNI-2 and ADNI-3 cohorts to investigate conversion to
MCI or AD. We will validate these models using a large independent holdout set to ensure rigor and
generalizability in our results. This project leverages an existing long-term collaborative environment between
Indiana University, Bloomington, and the University of Utah.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Mejia其他文献
Amanda Mejia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Mejia', 18)}}的其他基金
Bayesian methods for cortical surface neuroimaging data
用于皮质表面神经影像数据的贝叶斯方法
- 批准号:
10066355 - 财政年份:2019
- 资助金额:
$ 36.38万 - 项目类别:
Bayesian methods for cortical surface neuroimaging data
用于皮质表面神经影像数据的贝叶斯方法
- 批准号:
10318145 - 财政年份:2019
- 资助金额:
$ 36.38万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 36.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




