The pursuit of genetic causal mechanisms
追求遗传因果机制
基本信息
- 批准号:10291186
- 负责人:
- 金额:$ 45.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAll of Us Research ProgramAttentionAwarenessBiologicalCharacteristicsChromatinCohort StudiesComplexComputer softwareCounselingDNA ResequencingDNA Sequence AlterationDataData AnalysesData SetDependenceDevelopmentDiseaseDrug TargetingEnvironmentEnvironmental ExposureEthnic OriginEvaluationFamilyGene FrequencyGene MutationGenerationsGenesGeneticGenetic DeterminismGenetic PolymorphismGenetic Predisposition to DiseaseGenetic RiskGenetic VariationGenomeGenomicsGenotypeHeterogeneityIndividualLinear ModelsLinkLinkage DisequilibriumLiteratureMeasuresMediatingMedicalMedical RecordsMethodologyMethodsModelingNatureNoisePathway interactionsPatientsPerformancePhenotypePopulationPositioning AttributePreventionProbabilityResearchResearch PersonnelResearch Project GrantsResolutionResourcesRiskRisk AssessmentRoleSample SizeSamplingScientistSideSolidSpecificityStatistical Data InterpretationStatistical MethodsStructureTestingTimeTrainingVariantVeteransbasecausal variantcomputer sciencedrug developmentflexibilitygenetic architecturegenetic variantgenome sequencinggenome wide association studygenome-widegenomic locusgraduate studenthuman diseaseimprovedinsightinterestlarge datasetsmachine learning algorithmnon-geneticnovelnovel strategiespersonalized medicinepolygenic risk scoreprediction algorithmprogramsrare variantsexsoftware developmentstatisticstooltraitvirtualwhole genome
项目摘要
Project Summary
Recent years have witnessed the development of large research projects that involve
genotyping hundreds of thousands of individuals, on which we have available detailed medical records.
Examples include the All of us research project, the Million Veteran Program, and the UKBiobank
resource. Often, whole-genome sequencing data is also available for a substantial fraction of the
individuals. These large samples, with their precise genotypic and phenotypic information, give
us the opportunity to bring our understanding of the relations between genetic variation and
traits of medical interest to the next level.
While the initial small sample sizes available for genome wide association studies (GWAS)
motivated analyses that were approximative in nature, we are now in the position to probe more
closely the genetic causal mechanisms underlying medically relevant phenotypes. We can aspire
to distinguish variants that have causal effects from those that are associated because of linkage
disequilibrium or population structure. Indeed, we need to pay even greater attention to the
implications of hidden confounders: even small effects become significant when sample sizes are
large enough.
Increasing the resolution with which we can describe causal mechanisms will result in the
identification of clearer targets for drug development. It will also improve the precision of
personalized risk evaluations based on genotypes: if we can construct risk scores using variants
that are truly causal, their performance will remain solid across ethnicities and environmental
exposures.
To zoom in on genetic variants with causal effects, this project will leverage a set of new
statistical methodologies that the investigators have recently introduced. These new approaches
are remarkably flexible, in that they do not rely on specific assumptions of how phenotypes
are linked to genetic variants. Indeed, they allow researchers to capitalize on powerful machine
learning algorithms and, crucially, equip their results with precise replicability guarantees.
We have assembled a diverse and complementary team, including experts in statistical
genomics, methodological statistics and computer science, with a strong record both of software
development and genetic data analysis. A postdoctoral scholar and two graduate students will
contribute to the research program, and the interdisciplinary training they will acquire in
statistics, computation and genetics will add another substantial benefit.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHIARA SABATTI其他文献
CHIARA SABATTI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHIARA SABATTI', 18)}}的其他基金
Genetic Regulation of Gene Expression and its Impact on Phenotypes - Supplement
基因表达的遗传调控及其对表型的影响 - 补充
- 批准号:
9263713 - 财政年份:2016
- 资助金额:
$ 45.53万 - 项目类别:
New Statistical Methods for High Resolution Mapping of Multiple Phenotypes
多种表型高分辨率绘图的新统计方法
- 批准号:
8436758 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
Genetic Regulation of Gene Expression and its Impact on Phenotypes
基因表达的遗传调控及其对表型的影响
- 批准号:
8706980 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
Genetic Regulation of Gene Expression and its Impact on Phenotypes
基因表达的遗传调控及其对表型的影响
- 批准号:
8585015 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
Genetic Regulation of Gene Expression and its Impact on Phenotypes
基因表达的遗传调控及其对表型的影响
- 批准号:
8878355 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
New Statistical Methods for High Resolution Mapping of Multiple Phenotypes
多种表型高分辨率作图的新统计方法
- 批准号:
8881257 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
New Statistical Methods for High Resolution Mapping of Multiple Phenotypes
多种表型高分辨率绘图的新统计方法
- 批准号:
8642203 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
相似海外基金
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Nutrition for Precision Health, powered by the All of Us Research Program: Research Coordinating Center
精准健康营养,由“我们所有人研究计划”提供支持:研究协调中心
- 批准号:
10874354 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
All of Us Research Program Trans-America Consortium of the HCSRN
我们所有人研究计划 HCSRN 泛美联盟
- 批准号:
10871074 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
All of Us Research Program Heartland Consortium (AoURP-HC)
我们所有人研究计划中心联盟 (AoURP-HC)
- 批准号:
10871732 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
DARSaW: Developing, Assessing, and Refining Synthetic Sampling Weights to Improve Generalizability of the All of Us Research Program Data
DARSaW:开发、评估和细化合成采样权重,以提高我们所有人研究计划数据的普遍性
- 批准号:
10796237 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Engaging Diverse Stakeholders in Genomic/Precision Medicine Research: The All of Us Research Program Engagement Core
让不同的利益相关者参与基因组/精准医学研究:我们所有人研究计划的参与核心
- 批准号:
10789515 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Investigation of the social context and physical environment on cardiovascular disease disparities in the All of Us Research Program
“我们所有人研究计划”中心血管疾病差异的社会背景和物理环境调查
- 批准号:
10798725 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
The Participant Center: Empowering All of Us Research Program participation across the United States
参与者中心:增强我们所有人参与美国各地研究计划的能力
- 批准号:
10774158 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Nutrition for Precision Health, powered by the All of Us Research Program: Research Coordinating Center
精准健康营养,由“我们所有人研究计划”提供支持:研究协调中心
- 批准号:
10757488 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Multilevel analyses of oral health conditions among older adults in the All of Us Research Program
“我们所有人研究计划”中老年人口腔健康状况的多层次分析
- 批准号:
10658463 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别: