Abnormalities in postnatal brain development as a feature of congenital muscular dystrophies
先天性肌营养不良症的一个特征是出生后大脑发育异常
基本信息
- 批准号:10293053
- 负责人:
- 金额:$ 7.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2021-12-14
- 项目状态:已结题
- 来源:
- 关键词:BindingBrainCell Culture TechniquesCellsComplexDevelopmentDuchenne muscular dystrophyDystroglycanDystrophinECM receptorElectroporationEnsureEpendymal CellEtiologyGenesGlycoproteinsLightMembraneMolecularMusMuscleMuscle functionMuscle satellite cellMuscular DystrophiesMutateMutationMyelinNeonatalNerve FibersNeurologic DeficitNeurologic DysfunctionsNeuronsNotch Signaling PathwayOligodendrogliaOutcomeOutputPathway interactionsPatientsPhenotypeProcessProductionProsencephalonProtein IsoformsRegulationReporterResearch ProposalsRoleSignal TransductionStructureTimeVentricularcell typecongenital muscular dystrophydesignexperiencegliogenesisinsightmembermuscular dystrophy mouse modelmyelinationnerve stem cellneural modelneurogenesisneurotransmissionnotch proteinoligodendrocyte progenitorpostnatalpreventprogenitorreceptor bindingstem cell fatestem cell functionstem cell nichestem cellssubventricular zonewhite matter
项目摘要
The dystrophin-glycoprotein complex (DGC) is critical for muscle function. The loss of key DGC members
leads to a variety of muscular dystrophies, including Duchenne Muscular Dystrophy (DMD) in which the
dystrophin gene is mutated. Mutations in many DGC genes, including dystrophin, also cause neurological
dysfunction, yet the cell and molecular basis of these changes are not understood. We are now exploring new
roles for members of the DGC, including dystrophin and a key binding partner for dystrophin in the DGC, the
extracellular matrix receptor dystroglycan, in the developing ventricular/subventricular zone (V-SVZ), the major
neural stem cell niche of the forebrain that controls postnatal neurogenesis and gliogenesis. We recently
discovered that V-SVZ dystroglycan modulates notch signaling in neural stem cells to regulate both neural
stem cell fate decisions, as well as the development of ependymal cells, specialized multiciliated cells that
surround V-SVZ neural stem cells and which are critical for neural stem cell organization and function. A key
output of the V-SVZ during postnatal brain development is oligodendrocyte progenitor cells, which will go on to
myelinate the forebrain. We have also recently found that dystroglycan and dystrophin both influence
oligodendrocyte progenitor development during postnatal brain development, including delaying myelination in
white matter tracts. In the context of recent findings from the muscle field that indicate that in the absence of
dystrophin, notch signaling in perturbed in muscle stem cells, we propose that dystrophin may also be a key
regulator of notch signaling in brain neural stem cells, and in doing so, may alter developmental outcomes. In
the first aim we will examine how different isoforms of dystrophin regulates V-SVZ neural stem cell function,
i.e., the production of neuronal and glial progenitors, as well as niche development, i.e., the development,
maturation, and spatial organization of ependymal cells into V-SVZ niche structures. In the second aim we will
precisely target particular V-SVZ cells and times during early postnatal brain development to understand the
cell and temporal basis of dystrophin roles as well as the role of its transmembrane receptor binding partner,
dystroglycan. In the third aim we will examine dystrophin’s ability to regulate the notch signaling pathway in V-
SVZ neural stem cells, as well as attempt to rescue dystrophin-deficient cell phenotypes by modulation of the
notch pathway and determine the role of dystrophin-dystroglycan interactions in notch regulation. Throughout,
we will analyze stem cell niche phenotypes using DMD mouse models such as mdx3cv (in combination with
notch activity reporter mice), or following neonatal ventricle electroporation strategies to completely prevent
dystrophin expression in the developing V-SVZ. In addition we will assess dystrophin function in V-SVZ cell
cultures that model neural stem cell and ependymal cell development. Together these studies will investigate
dystrophin’s role in the formation and function of a crucial stem cell niche as it generates neural progenitors for
the postnatal brain, and will provide insight into how dystrophin loss in DMD leads to neurological deficits.
肌营养不良蛋白-糖蛋白复合物(DGC)对肌肉功能至关重要。DGC主要成员的流失
导致各种肌营养不良症,包括杜氏肌营养不良症(DMD),其中
dystrophin基因突变。许多DGC基因的突变,包括肌营养不良蛋白,也会导致神经系统疾病。
功能障碍,但这些变化的细胞和分子基础尚不清楚。我们正在探索新的
DGC成员的作用,包括肌营养不良蛋白和DGC中肌营养不良蛋白的关键结合伴侣,
细胞外基质受体肌营养不良蛋白聚糖,在发育中的脑室/脑室下区(V-SVZ),主要
控制出生后神经发生和神经胶质发生的前脑神经干细胞龛。我们最近
发现V-SVZ肌营养不良蛋白聚糖调节神经干细胞中的notch信号传导,以调节神经干细胞和神经细胞。
干细胞的命运决定,以及室管膜细胞的发育,专门的多纤毛细胞,
其围绕V-SVZ神经干细胞并且对于神经干细胞组织和功能是关键的。一个关键
在出生后的大脑发育过程中,V-SVZ的输出是少突胶质细胞祖细胞,
使前脑有髓鞘。我们最近还发现,肌营养不良蛋白聚糖和肌营养不良蛋白都影响
出生后脑发育过程中少突胶质细胞祖细胞的发育,包括延迟
白色物质束。在最近的研究结果的背景下,从肌肉领域表明,在缺乏
肌营养不良蛋白,notch信号在肌肉干细胞中受到干扰,我们提出肌营养不良蛋白也可能是一个关键,
在脑神经干细胞中的notch信号调节器,并在这样做时,可能会改变发育结果。在
第一个目的是我们将研究肌营养不良蛋白的不同同种型如何调节V-SVZ神经干细胞功能,
也就是说,神经元和神经胶质祖细胞的产生,以及生态位发育,即,发展,
成熟,室管膜细胞空间组织成V-SVZ生态位结构。在第二个目标中我们将
在出生后早期的大脑发育过程中,精确地靶向特定的V-SVZ细胞和时间,以了解
肌营养不良蛋白作用的细胞和时间基础以及其跨膜受体结合伴侣的作用,
肌营养不良聚糖在第三个目标中,我们将研究抗肌萎缩蛋白调节V-细胞中notch信号通路的能力。
SVZ神经干细胞,以及试图通过调节神经干细胞来拯救肌营养不良蛋白缺陷细胞表型。
notch途径,并确定在notch调控中肌营养不良蛋白-肌营养不良蛋白聚糖相互作用的作用。自始至终,
我们将使用DMD小鼠模型,如mdx 3cv(结合
notch活性报告小鼠),或遵循新生心室电穿孔策略以完全防止
在发育中的V-SVZ中肌营养不良蛋白的表达。此外,我们将评估抗肌萎缩蛋白在V-SVZ细胞中的功能。
模拟神经干细胞和室管膜细胞发育的培养物。这些研究将一起调查
肌营养不良蛋白在关键干细胞龛的形成和功能中的作用,因为它产生神经祖细胞,
出生后的大脑,并将提供深入了解如何dystrophin损失在DMD导致神经功能缺损。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HOLLY A COLOGNATO其他文献
HOLLY A COLOGNATO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HOLLY A COLOGNATO', 18)}}的其他基金
Shared Instrumentation Grant for the purchase of a Leica SP8X Confocal
用于购买 Leica SP8X Confocal 的共享仪器补助金
- 批准号:
9075725 - 财政年份:2016
- 资助金额:
$ 7.12万 - 项目类别:
A 6BETA 1 INTEGRIN-MEDIATED SURVIVAL OF OLIGODENDROCYTES
6BETA 1 整合素介导的少突细胞存活
- 批准号:
6539533 - 财政年份:2002
- 资助金额:
$ 7.12万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Operating Grants
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Research Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Bioelectric mechanisms of brain development
职业:大脑发育的生物电机制
- 批准号:
2338239 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Continuing Grant
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 7.12万 - 项目类别:
Operating Grants