Integration of ventilation-perfusion matching by hypoxic pulmonary vasoconstriction
通过缺氧肺血管收缩整合通气-灌注匹配
基本信息
- 批准号:10292926
- 负责人:
- 金额:$ 3.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAffectAir MovementsAlveolarAnatomyAreaAsthmaBiochemistryBloodBlood CirculationBlood VesselsBlood capillariesBlood flowBronchoconstrictionBronchodilationCalcium ChannelComputer ModelsConsensusCouplingCystic Fibrosis Transmembrane Conductance RegulatorDataDiseaseEmbolismEndotheliumEnsureEnvironmentExhibitsExposure toGap JunctionsGasesGlassGoalsHealthHemoglobinHypoxemiaHypoxiaHypoxia PathwayInfusion proceduresKnowledgeLabelLungMeasuresMechanicsMediatingMembraneMicrospheresModelingMolecularOrganOxygenPathologicPathologyPathway interactionsPatientsPatternPerfusionPeripheralPharmacologyPhysicsPhysiologicalPublishingPulmonary CirculationPulmonary EmbolismPulmonary FibrosisRattusRegional Blood FlowRegulationRoleSignal Transduction PathwaySmooth Muscle MyocytesSphingomyelinaseSprague-Dawley RatsStructureSystemTestingTherapeutic InterventionTissuesVascular Smooth MuscleVasodilationVeno-Occlusive Diseasearteriolebaseblood gas analyzerconnexin 40constrictionexperimental studyhemodynamicsin silicolung hypoxiamathematical modeloxygen transportpredictive modelingpulmonary functionresponsesensortheoriesuptakevasoconstrictionventilation
项目摘要
Project Summary
The spatial overlap of airflow (ventilation) and blood flow (perfusion) is a critical determinant of gas exchange
efficiency in the lungs. Vaso-occlusive diseases such as pulmonary emboli are characterized by ventilation-
perfusion (V/Q) mismatching which frequently results in secondary hypoxemia. Despite the physiological
importance of V/Q matching, there are gaps in our knowledge of the regulatory mechanisms that maintain
adequate gas exchange under pathological and normal conditions. In three aims, we propose to study the
molecular and integrative role of hypoxic pulmonary vasoconstriction (HPV) in regulating V/Q matching. HPV is
activated in response to local alveolar hypoxia, where upstream arterioles constrict to redirect blood flow to
areas of the lung with greater oxygen supply. There is currently no consensus in the field regarding the
governing molecular pathways of this physiological phenomenon. Moreover, it is not understood how the
integrated action of HPV affects vascular/tissue mechanics and oxygen transport at the whole-organ level. An
integrated understanding of HPV will allow us to better understand pathologies where V/Q mismatching occurs
and develop more efficacious therapeutic interventions. We hypothesize that (1) HPV is mediated by a
conducted vascular response in which alveolar hypoxia depolarizes the alveolar-capillary boundary and then a
wave of depolarization propagates through the endothelial wall in the opposite direction of blood flow; and (2)
homogenization of regional blood flow by HPV will homogenize the regional alveolar-capillary oxygen flux
which maximizes the uptake of oxygen into the bloodstream. By integrating theory and experiments we will
develop, validate, and make functional predictions to test these hypotheses with a multi-scale multi-physics
computational model of V/Q matching. This computational model accounts for the structure of pulmonary
vascular networks, mechanical coupling of blood-tissue interactions, gas exchange, hemoglobin biochemistry,
and vasoregulatory mechanisms; and ultimately provides an in silico environment for hypothesis testing and
refinement. Our model will be used to predict how regional alveolar-capillary oxygen flux is augmented in
response to hypoxia and acute vascular occlusions. These predictions will be compared to and scrutinized
against our own rat experiments where we measure pulmonary blood flow distribution via the infusion and
imagining of fluorescently labeled microspheres (15 µm), and systemic arterial blood oxygen by a blood gas
analyzer. Some experiments will involve the infusion of 500 µm glass microspheres to generate large V/Q
mismatches, and/or include the administration of pharmacological agents to inhibit key players in the putative
pathway that governs HPV. Support or disproof and necessary refinements of our hypotheses will be based on
the ability/inability of our computational model of V/Q matching to simultaneously explain measured systemic
arterial oxygen and blood flow distributions.
项目摘要
气流(通气)和血流(灌注)的空间重叠是气体交换的关键决定因素
肺的效率。肺栓塞等血管闭塞性疾病的特征是通气-
灌注(V/Q)不匹配,这经常导致继发性低氧血症。尽管生理上
虽然V/Q匹配的重要性,但我们对维持V/Q匹配的调节机制的认识存在差距。
在病理和正常条件下进行充分的气体交换。在三个目标中,我们建议研究
缺氧性肺血管收缩(HPV)在调节V/Q匹配中的分子和整合作用。HPV是
激活响应局部肺泡缺氧,其中上游小动脉收缩以将血流重定向到
肺内氧气供应量较大的区域。目前,该领域尚未就以下问题达成共识
控制这种生理现象的分子途径。此外,人们不明白,
HPV的综合作用影响整个器官水平的血管/组织力学和氧气输送。一个
对HPV的综合了解将使我们更好地了解发生V/Q不匹配的病理
并开发更有效的治疗干预措施。我们假设(1)HPV是由一种
进行血管反应,其中肺泡缺氧使肺泡-毛细血管边界去极化,然后
去极化波以与血流相反的方向通过内皮壁传播;以及(2)
通过HPV使局部血流均匀化将使局部肺泡-毛细血管氧通量均匀化
这使血液中的氧气吸收最大化。通过理论与实验相结合,
开发、验证和进行功能预测,以多尺度多物理场测试这些假设
V/Q匹配的计算模型。该计算模型考虑了肺动脉的结构,
血管网络,血液-组织相互作用的机械耦合,气体交换,血红蛋白生物化学,
和血管调节机制;并最终为假设检验和
精致。我们的模型将被用来预测如何区域肺泡毛细血管氧流量增加,
对缺氧和急性血管闭塞的反应。这些预测将被比较和审查
与我们自己的大鼠实验相比,我们通过输注测量肺血流分布,
荧光标记微球(15 µm)成像,通过血气分析系统动脉血氧
分析仪一些实验将涉及注入500 µm玻璃微球以产生大V/Q
错配,和/或包括施用药理学试剂以抑制推定的免疫缺陷中的关键参与者。
控制HPV的途径。支持或反证和必要的改进,我们的假设将基于
我们的V/Q匹配的计算模型同时解释测量的系统性的能力/不能力
动脉血氧和血流分布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Daniel Marquis其他文献
Andrew Daniel Marquis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Daniel Marquis', 18)}}的其他基金
Integration of ventilation-perfusion matching by hypoxic pulmonary vasoconstriction
通过缺氧肺血管收缩整合通气-灌注匹配
- 批准号:
10065064 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant