Studying pseudogout using natural language processing and novel imaging approaches
使用自然语言处理和新颖的成像方法研究假性痛风
基本信息
- 批准号:10292824
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanArthritisAwardBioinformaticsBiological MarkersClinical ResearchClinical SciencesCohort StudiesComplementComputerized Medical RecordDataData AnalysesData SetDevelopmentDiagnosisEnvironmentEquipmentFlareFoundationsFundingFutureGoalsGrantHealthcareHospitalsHypersensitivityImmunologyInfrastructureInterventionKnowledgeLeadLinkMachine LearningManuscriptsMedicare claimMedicineMentored Patient-Oriented Research Career Development AwardMentorsMethodsMorbidity - disease rateNatural Language ProcessingOutcomeOutcome MeasurePainParentsPerformancePhysiciansPrevention strategyProductivityPseudogoutPublic Health SchoolsResearchResearch PersonnelResourcesRheumatologyRisk FactorsRoentgen RaysSerumTestingTimeTrainingUltrasonographyUnited States National Institutes of HealthWagesWomanWorkX-Ray Computed Tomographycardiovascular disorder riskcareercareer developmentcrystallinityexperienceimaging approachimaging modalityinstructormedical schoolsmusculoskeletal imagingmusculoskeletal ultrasoundnovelpatient orientedpredictive modelingpreventprognosticprospectiveranpirnaserecruitresearch and developmentstem
项目摘要
PROJECT SUMMARY/ABSTRACT (FROM FUNDED PARENT K23 APPLICATION)
Candidate: Dr. Tedeschi is an Instructor in Medicine at Harvard Medical School (HMS) and Associate
Physician in the Division of Rheumatology, Immunology and Allergy’s Section of Clinical Sciences (SCS) at
Brigham and Women’s Hospital (BWH). She received an MPH from the Harvard T.H. Chan School of Public
Health (HSPH). Her 10 first-author manuscripts, two BWH grants, and foundation award exemplify her
productivity and commitment to research. She has assembled an experienced team of mentors and
collaborators, led by Dr. Daniel Solomon (primary mentor) and Drs. Katherine Liao and Karen Costenbader
(co-mentors), to guide her training in natural language processing and machine learning approaches for clinical
research, analysis of linked electronic medical record (EMR) and Medicare claims data, and interpretation of
advanced imaging modalities. Focused coursework at HSPH and HMS will complement the experience she
gains through her proposed studies of pseudogout risk factors and long-term outcomes. Training in dual-
energy CT and ultrasound interpretation for crystalline arthritis will be obtained via one-on-one sessions. Her
long-term career goal is to become an independent patient-oriented investigator focused on pseudogout.
Environment: Dr. Tedeschi has a commitment from her Division for >75% protected time for research and
career development activities during the K23 award period. Support from the Division and her primary mentor’s
research funds will supplement her salary and project-related expenses. The SCS, a collaborative clinical
research group in the Division of Rheumatology, has extensive infrastructure including the VERITY
Bioinformatics Core (NIH-P30-AR072577, PI: Solomon) that will provide resources and expertise for the
proposed studies. In addition, the BWH Arthritis Center is one of the largest nationally, facilitating subject
recruitment, and the BWH Division of Musculoskeletal Imaging has state-of-the-art equipment and expertise
applying dual-energy CT in crystalline arthritis. Coursework at HSPH and HMS, adjacent to BWH, will provide
training necessary for Dr. Tedeschi’s development into an independent investigator. Research: Dr. Tedeschi’s
long-term objective is to prevent and reduce morbidity from pseudogout, an understudied, painful crystalline
arthritis that affects 8-10 million Americans. She will use natural language processing and machine learning
approaches to enhance an algorithm for identifying pseudogout in EMR data. She will study risk factors for and
long-term outcomes in pseudogout, harnessing vast amounts of information contained in Partners HealthCare
EMR data and Medicare claims data, and will gain experience working with linked datasets. Dr. Tedeschi will
recruit subjects with pseudogout and other types of mono- and oligoarthritis to test and compare the
performance of dual-energy CT scanning, musculoskeletal ultrasound, and x-ray for identifying pseudogout.
Her proposed K23 projects will lead to manuscripts and data to be leveraged in an R01 application focused on
pseudogout during the award period, leading to independence as a patient-oriented investigator.
项目摘要/摘要(来自获资助家长k23申请书)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara K. Tedeschi其他文献
Core domain set for chronic and/or recurrent manifestations of calcium pyrophosphate deposition disease: OMERACT delphi survey to establish consensus
焦磷酸钙沉积病慢性和/或复发性表现的核心领域集:旨在达成共识的OMERACT德尔菲调查
- DOI:
10.1016/j.semarthrit.2025.152669 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.400
- 作者:
Yiling Zhang;Sara K. Tedeschi;Abhishek Abhishek;Owen Hensey;David Grossberg;Ken Cai;Beverley Shea;Jasvinder A. Singh;Robin Christensen;Teodora Serban;Edoardo Cipolletta;Konstantinos Parperis;Cesar Diaz-Torne;Geraldine M McCarthy;Fabio Becce;Tamer A Gheita;Silvia Sirotti;Sara Nysom Christiansen;Luis Coronel;Lisa K Stamp;Nicola Dalbeth - 通讯作者:
Nicola Dalbeth
Core domain set for studies of acute calcium pyrophosphate crystal arthritis: OMERACT delphi survey to establish consensus
急性焦磷酸钙晶体性关节炎研究的核心领域集:基于国际骨关节炎研究学会(OMERACT)德尔菲调查达成的共识
- DOI:
10.1016/j.semarthrit.2025.152670 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.400
- 作者:
Yiling Zhang;Sara K. Tedeschi;Abhishek Abhishek;Owen Hensey;David Grossberg;Ken Cai;Beverley Shea;Jasvinder A. Singh;Robin Christensen;Teodora Serban;Edoardo Cipolletta;Konstantinos Parperis;Cesar Diaz-Torne;Geraldine M McCarthy;Fabio Becce;Tamer A Gheita;Silvia Sirotti;Sara Nysom Christiansen;Luis Coronel;Lisa K Stamp;Nicola Dalbeth - 通讯作者:
Nicola Dalbeth
Genome-wide association study in chondrocalcinosis reveals emENPP1/em as a candidate therapeutic target in calcium pyrophosphate deposition disease
全基因组关联研究在软骨钙质沉着症中揭示了 emENPP1/em 作为焦磷酸钙沉积病的候选治疗靶点
- DOI:
10.1016/j.ard.2025.04.002 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:20.600
- 作者:
Riku Takei;Ann Rosenthal;Tristan Pascart;Richard J. Reynolds;Tuhina Neogi;Robert Terkeltaub;Sara K. Tedeschi;Tony R. Merriman - 通讯作者:
Tony R. Merriman
Sara K. Tedeschi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara K. Tedeschi', 18)}}的其他基金
Causal Inference for Better Understanding Clinical Trials Results: Reconciling Discrepant Comparative Evidence from Two Major Cardiovascular Safety Trials of Urate-Lowering Therapy
更好地理解临床试验结果的因果推断:调和两个主要降尿酸治疗心血管安全性试验的差异比较证据
- 批准号:
10507247 - 财政年份:2022
- 资助金额:
$ 5.4万 - 项目类别:
Causal Inference for Better Understanding Clinical Trials Results: Reconciling Discrepant Comparative Evidence from Two Major Cardiovascular Safety Trials of Urate-Lowering Therapy
更好地理解临床试验结果的因果推断:调和两个主要降尿酸治疗心血管安全性试验的差异比较证据
- 批准号:
10662563 - 财政年份:2022
- 资助金额:
$ 5.4万 - 项目类别:
Studying pseudogout using naturallanguage processing and novelimaging approaches
使用自然语言处理和新颖的成像方法研究假性痛风
- 批准号:
10359786 - 财政年份:2019
- 资助金额:
$ 5.4万 - 项目类别:
Studying pseudogout using naturallanguage processing and novelimaging approaches
使用自然语言处理和新颖的成像方法研究假性痛风
- 批准号:
10578683 - 财政年份:2019
- 资助金额:
$ 5.4万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant