The global regulation of dynamics and structure mediated by single hydride in a family of reductases
还原酶家族中单个氢化物介导的动力学和结构的全局调节
基本信息
- 批准号:10296136
- 负责人:
- 金额:$ 30.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAffinityAmidesBilirubinBiliverdin reductaseBiliverdineBindingBiochemicalBiologicalCellsChemicalsCoenzyme ACoenzymesCommunicationCoupledCouplingCulicidaeDataDistalEnzymesEnzymes and CoenzymesFamilyFamily memberFlavinsGlobal ChangeHematopoieticHumanLinkMapsMediatingMethodsMolecular ConformationMonitorMutateMutationNADPNatureOrganismOxidation-ReductionOxidesOxidoreductasePlant RootsProtein EngineeringProteinsPublicationsRegulationRelaxationResolutionRoentgen RaysRoleSiteStructureSystemX-Ray Crystallographybasebiophysical techniquesenzyme structurehuman pathogeninnovationinsightmemberoxidationstereochemistrytherapeutic targettumor
项目摘要
PROJECT SUMMARY
We have discovered that a single hydride induces global changes to both structure and dynamics within
multiple members of an enzyme family, providing a fundamental link between enzyme structure, dynamics, and
allostery that has implications to the entire oxidoreductase superfamily. Specifically, the BLVRB family are
NADPH-dependent reductases present in multiple organisms where they regulate cellular redox through the
reduction of biliverdin-to-bilirubin and a wide array of flavin substrates. While our recent publications have
revealed that coenzyme binding is coupled to global conformational and dynamic changes, we have now
discovered that there are largescale changes coupled to the oxidation state of the coenzyme as far as 23 Å
away. Thus,
structural
catalytic
the central premise of this application is that a coenzyme's hydride is globally coupled to both
and dynamic changes within an enzyme family and that such global coupling is integrally related to
function.
The novelty here is that we will explicitly determine how a single hydride, i.e., the difference between
NADPH/NADP+, is globally linked (Aim 1) and how this global coupling controls enzyme function (Aim 2).
Further innovation includes the following. First, we have discovered that hydride-coupled networks can be
modulated by mutations directly to the enzyme/coenzyme interface but also to distally coupled sites, which
gives us the unique opportunity to determine the role of these networks in function. Second, we have
discovered that evolutionarily changing residues modulate hydride coupled networks and function, providing
remarkable insight into the evolutionary role of hydride-mediated coupling and function. Evolutionary
differences will therefore be exploited to identify allosteric networks coupled to the oxidative state of the
coenzyme and simultaneously reveal their evolutionary roles in function. Based on our preliminary data that
includes NMR, X-ray crystallographic, and biochemical studies, we hypothesize that the coenzyme oxidation
induces its own conformational change that is further propagated globally through the enzyme in multiple
BLVRB family members (referred to as “insideout” coupling) and that networks coupled to these changes
modulate function (referred to as “outsidein” coupling). We will address this hypothesis through the following:
Aim 1) Determine how a single hydride modulates the global dynamics and structure within the BLVRB
family of enzymes. NMR solution studies using CSPs, relaxation studies, and ensembles methods will be
used to determine how a single hydride imparts its global regulation to dynamics and structure using three
distinct BLVRB family members with both active site and distal differences (human, hyrax, and mosquito).
Aim 2) Determine the functional role of networks coupled to the oxidative state of the coenzyme.
Biochemical and biophysical methods will be used to determine the functional role of hydride-mediated global
regulation, which include both the role of direct interactions with the coenzyme's hydride as well as the role of
networks of communication coupled to the coenzyme (allostery).
项目概要
我们发现单个氢化物会引起内部结构和动力学的整体变化
酶家族的多个成员,提供酶结构、动力学和酶之间的基本联系
对整个氧化还原酶超家族有影响的变构。具体来说,BLVRB 家族是
NADPH 依赖性还原酶存在于多种生物体中,它们通过
胆绿素到胆红素和多种黄素底物的减少。虽然我们最近的出版物有
揭示辅酶结合与整体构象和动态变化耦合,我们现在有
发现辅酶氧化态发生了高达 23 Å 的大规模变化
离开。因此,
结构性的
催化
该应用的中心前提是辅酶的氢化物与两者全局偶联
和酶家族内的动态变化,并且这种全局耦合与
功能。
这里的新颖之处在于,我们将明确确定单个氢化物如何,即
NADPH/NADP+ 是全局关联的(目标 1),以及这种全局耦合如何控制酶功能(目标 2)。
进一步的创新包括以下内容。首先,我们发现氢化物耦合网络可以
通过直接突变到酶/辅酶界面以及远端偶联位点来调节,
为我们提供了独特的机会来确定这些网络在功能中的作用。其次,我们有
发现进化变化的残基调节氢化物耦合网络和功能,提供
对氢化物介导的耦合和功能的进化作用的深刻见解。进化论
因此,将利用差异来识别与氧化状态相关的变构网络。
辅酶并同时揭示其在功能中的进化作用。根据我们的初步数据
包括 NMR、X 射线晶体学和生化研究,我们假设辅酶氧化
诱导其自身的构象变化,并通过多种酶在全球范围内进一步传播
BLVRB 家族成员(称为“内→外”耦合)以及与这些变化耦合的网络
调制功能(称为“外→内”耦合)。我们将通过以下方式来解决这个假设:
目标 1) 确定单个氢化物如何调节 BLVRB 内的整体动力学和结构
酶家族。使用 CSP、松弛研究和集成方法的 NMR 解决方案研究将
用于确定单个氢化物如何使用三个参数将其全局调节传递给动力学和结构
不同的 BLVRB 家族成员具有活性位点和远端差异(人类、蹄兔和蚊子)。
目标 2) 确定与辅酶氧化状态耦合的网络的功能作用。
将使用生物化学和生物物理方法来确定氢化物介导的全局的功能作用
调节,其中包括与辅酶氢化物直接相互作用的作用以及
与辅酶(变构)耦合的通讯网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELAN Z EISENMESSER其他文献
ELAN Z EISENMESSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELAN Z EISENMESSER', 18)}}的其他基金
SARS-CoV-2 N interactions with RNA and host cell cyclophilin-A
SARS-CoV-2 N 与 RNA 和宿主细胞亲环蛋白-A 的相互作用
- 批准号:
10349084 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
SARS-CoV-2 N interactions with RNA and host cell cyclophilin-A
SARS-CoV-2 N 与 RNA 和宿主细胞亲环蛋白-A 的相互作用
- 批准号:
10622478 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Diversity Supplement R01GM139892 - Lorena Alamillo
多样性补充 R01GM139892 - Lorena Alamillo
- 批准号:
10811189 - 财政年份:2021
- 资助金额:
$ 30.28万 - 项目类别:
The global regulation of dynamics and structure mediated by single hydride in a family of reductases
还原酶家族中单个氢化物介导的动力学和结构的全局调节
- 批准号:
10656573 - 财政年份:2021
- 资助金额:
$ 30.28万 - 项目类别:
Determining how the giant Streptococcus Pneumoniae IgA1 protease cleaves its host IgA1 substrate and how this interaction can be blocked
确定巨型肺炎链球菌 IgA1 蛋白酶如何裂解其宿主 IgA1 底物以及如何阻断这种相互作用
- 批准号:
9896366 - 财政年份:2019
- 资助金额:
$ 30.28万 - 项目类别:
Identifying the missing link in inflammatory signaling
识别炎症信号传导中缺失的环节
- 批准号:
9807309 - 财政年份:2019
- 资助金额:
$ 30.28万 - 项目类别:
Combining chemical shift-based and experimental approaches to study enzyme dynami
结合基于化学位移和实验的方法来研究酶动力学
- 批准号:
8693572 - 财政年份:2014
- 资助金额:
$ 30.28万 - 项目类别:
Combining chemical shift-based and experimental approaches to study enzyme dynami
结合基于化学位移和实验的方法来研究酶动力学
- 批准号:
9261551 - 财政年份:2014
- 资助金额:
$ 30.28万 - 项目类别:
EMMPRIN: from biology to molecular mechanism
EMMPRIN:从生物学到分子机制
- 批准号:
8106630 - 财政年份:2011
- 资助金额:
$ 30.28万 - 项目类别:
EMMPRIN: from biology to molecular mechanism
EMMPRIN:从生物学到分子机制
- 批准号:
8241002 - 财政年份:2011
- 资助金额:
$ 30.28万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Research Grant














{{item.name}}会员




