Evaluating ASD Symptomatology in Children with Down Syndrome

评估唐氏综合症儿童的 ASD 症状

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Approximately 1 in 5 individuals with Down syndrome (DS) meet criteria for comorbid autism spectrum disorder (ASD), a tenfold increase in risk compared to the general population. Comorbid ASD is associated with delayed language, increased behavioral challenges, greater demands on caregivers, and higher costs of healthcare across the lifespan. Recent advances in precision medicine have the potential to substantially improve long-term outcomes among individuals with DS and comorbid conditions such as ASD. However, for this potential to be realized, reliable and valid measures are required. There is currently little scientific basis for the identification and measurement of ASD symptoms in DS. Without accurate measurement, clinical trials in DS cannot properly apply ASD inclusion criteria, stratify cohorts where necessary, or track response to treatment. Consequently, there is an urgent need for clinical trials to have reliable, valid ASD screening, diagnostic, and symptom monitoring tools in DS. To address this need, we propose to (1) evaluate the psychometric characteristics of ASD symptom measures in DS, and (2) characterize ASD symptom profiles in DS through deep phenotyping. Characterizing ASD symptoms and related developmental features in DS will further inform clinical trials by enabling them to stratify cohorts by comorbid ASD and monitor response to treatment across symptom profiles. These aims align with two priorities of the NIH INCLUDE Project: (a) increase the likelihood of clinical trial success through testing of clinical outcome assessment measures, and (b) define the presentation and course of co-occurring conditions in individuals with DS. In an effort to improve the efficiency, generalizability, and inclusiveness of future clinical trials, the proposed study will be conducted online. To accomplish these aims, we will leverage existing resources (NIH’s DS-Connect; Emory University’s DS360) to conduct a large-scale, nationwide study of ASD symptoms in 500 6- to 18-year-olds with DS. We will examine the reliability, validity, and variability of three well-known caregiver report-based ASD screening and symptom measures. We will leverage data from these ASD measures, along with additional deep phenotyping, to characterize the heterogeneity of the ASD phenotype in DS and identify symptom profiles. Finally, we propose an exploratory aim among a subsample (n = 25) at high or low ASD risk to examine the feasibility of tele-assessment methods for gathering direct, performance-based ASD evaluations. Data generated from this project will enhance clinical trial readiness by providing ASD measures in DS that can (a) screen for ASD risk to identify candidates for treatment and (b) stratify cohorts by ASD symptom profiles and monitor response to treatment across these profiles. Once validated, these ASD measures will provide a much-needed resource for future clinical trials to document outcomes in response to treatment. The feasibility study will determine the extent to which tele-assessments can be used for performance-based ASD evaluations in children with DS. The knowledge gained will prepare the field for conducting clinical trials online, particularly important in the era of the COVID-19 pandemic.
项目概要/摘要 大约五分之一的唐氏综合症 (DS) 患者符合共病自闭症谱系标准 与一般人群相比,自闭症谱系障碍(ASD)的风险增加十倍。共病自闭症谱系障碍 (ASD) 与 语言迟缓、行为挑战增加、对护理人员的要求更高以及护理成本更高 整个生命周期的医疗保健。精准医学的最新进展有可能大大提高 改善 DS 和自闭症谱系障碍 (ASD) 等共病患者的长期预后。然而,对于 要实现这一潜力,需要采取可靠和有效的措施。目前尚无科学依据 DS 中 ASD 症状的识别和测量。如果没有精确的测量,临床试验 DS 无法正确应用 ASD 纳入标准、在必要时对队列进行分层或跟踪治疗反应。 因此,临床试验迫切需要可靠、有效的 ASD 筛查、诊断和治疗。 DS 中的症状监控工具。为了满足这一需求,我们建议(1)评估心理测量 DS 中 ASD 症状测量的特征,以及 (2) 通过以下方式表征 DS 中 ASD 症状概况: 深层表型分析。描述 DS 中 ASD 症状和相关发育特征将进一步提供信息 临床试验,使他们能够根据共病自闭症谱系障碍(ASD)对队列进行分层,并监测整个群体对治疗的反应 症状概况。这些目标与 NIH INCLUDE 项目的两个优先事项相一致:(a) 增加可能性 通过测试临床结果评估措施来确定临床试验是否成功,以及 (b) 定义演示文稿 以及 DS 患者并发病症的病程。为了提高效率、通用性, 以及未来临床试验的包容性,拟议的研究将在线进行。为了实现这些目标, 我们将利用现有资源(NIH 的 DS-Connect;埃默里大学的 DS360)进行大规模、 一项针对 500 名 6 至 18 岁 DS 患者的 ASD 症状的全国性研究。我们将检查信度、效度、 三位知名护理人员基于报告的 ASD 筛查和症状测量的变异性。我们将 利用这些 ASD 测量数据以及额外的深度表型分析来表征 DS 中 ASD 表型的异质性并确定症状概况。最后,我们提出一个探索性目标 在 ASD 高风险或低风险的子样本 (n = 25) 中进行研究,以检验远程评估方法的可行性 收集直接的、基于绩效的 ASD 评估。该项目产生的数据将增强临床试验 通过在 DS 中提供 ASD 措施来做好准备,这些措施可以 (a) 筛查 ASD 风险以确定治疗候选者 (b) 根据 ASD 症状特征对队列进行分层,并监测这些特征对治疗的反应。一次 经过验证,这些 ASD 测量将为未来的临床试验提供急需的资源,以记录 对治疗的反应结果。可行性研究将确定远程评估能够在多大程度上发挥作用 可用于 DS 儿童基于表现的 ASD 评估。所获得的知识将为 在线进行临床试验的领域,这在 COVID-19 大流行时代尤其重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marie Moore Channell其他文献

Marie Moore Channell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marie Moore Channell', 18)}}的其他基金

Evaluating ASD Symptomatology in Children with Down Syndrome
评估唐氏综合症儿童的 ASD 症状
  • 批准号:
    10592162
  • 财政年份:
    2022
  • 资助金额:
    $ 44.08万
  • 项目类别:
Parent and child predictors of mental state language development in Down syndrome
唐氏综合症精神状态语言发展的父母和孩子预测因素
  • 批准号:
    9195119
  • 财政年份:
    2016
  • 资助金额:
    $ 44.08万
  • 项目类别:
Parent and child predictors of mental state language development in Down syndrome
唐氏综合症精神状态语言发展的父母和孩子预测因素
  • 批准号:
    9035096
  • 财政年份:
    2016
  • 资助金额:
    $ 44.08万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了