Mechanical regulation of von Willebrand factor

血管性血友病因子的机械调节

基本信息

  • 批准号:
    10296176
  • 负责人:
  • 金额:
    $ 60.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT In human bodies, bleeding is stopped when a clot is formed at the site of vascular damage. Under rapid flow conditions, the plasma protein von Willebrand factor (VWF) plays an indispensable role in capturing both platelets and collagen on damaged vessel walls, allowing the formation of platelet plugs. The adhesion between VWF and platelets is mediated by the interaction between the A1 domain of VWF and the Ib chain of the platelet receptor GPIb-IX complex. Gain-of-function mutations in A1 that enhance this interaction lead to type 2B von Willebrand disease (VWD). Targeting the A1GPIb-IX interaction has been an emerging strategy to treat or preempt bleeding and thrombotic disorders, though success in this area has been very limited. The lack of progress is due largely to the enigmatic nature of how exactly A1 remains inactive in blood circulation and how it is instantly activated to bind to GPIb-IX upon bleeding. Our recent identification of an autoinhibitory module (AIM), consisting of N- and C-terminal flanking regions on A1 and their O-linked glycans, is crucial for understanding A1 mechanoactivation during bleeding. In addition, AIM can be unfolded by a tensile pulling force of 8 to 20 pN. Based on these preliminary discoveries, we hypothesize that O-linked glycan structures, particularly sialic acids, further stabilize AIM and contribute to the mechanical regulation of A1GPIb-IX binding and that modulating AIM’s mechanical properties can be utilized to treat or preempt blood diseases. We propose to test this potentially paradigm-shifting hypothesis using state-of-the-art analytical biophysical tools, including single-molecule force spectroscopy, single-molecule fluorescence microscopy and all-atom molecular dynamics simulation. Three specific aims will be pursued to test the hypotheses. Aim 1 is to characterize the structure and biomechanical properties of AIM. Aim 2 is to determine how autoinhibition is regulated by O-linked glycosylation in AIM. And Aim 3 is to investigate the role of AIM in type 2B VWD and therapeutic applications. Completion of the proposed studies will identify the key molecular and biophysical mechanisms underlying how AIM mechanically regulates VWF function and platelet binding and will aid in devising novel therapeutic strategies for the prevention and treatment of human blood disease.
项目概要/摘要 在人体中,当血管损伤部位形成凝块时,出血就会停止。急流下 在这种情况下,血浆蛋白血管性血友病因子 (VWF) 在捕获两者方面起着不可或缺的作用。 受损血管壁上的血小板和胶原蛋白,从而形成血小板栓塞。之间的附着力 VWF 和血小板是由 VWF 的 A1 结构域和 Ib 链之间的相互作用介导的 血小板受体 GPIb-IX 复合物。 A1 中增强这种相互作用的功能获得突变导致类型 2B 冯维勒布兰德病 (VWD)。针对 A1-GPIb-IX 相互作用已成为一种新兴的治疗策略 或预防出血和血栓性疾病,尽管这方面的成功非常有限。缺乏 进展很大程度上归因于 A1 到底如何在血液循环中保持不活跃状态以及它如何发挥作用的神秘本质。 出血后立即被激活与 GPIb-IX 结合。我们最近鉴定出一个自动抑制模块 (AIM),由 A1 上的 N 端和 C 端侧翼区域及其 O 连接聚糖组成,对于 了解出血期间的 A1 机械激活。另外,AIM可以通过拉伸拉力展开 8 至 20 pN。基于这些初步发现,我们假设 O-连接聚糖结构, 特别是唾液酸,进一步稳定 AIM 并有助于 A1-GPIb-IX 结合的机械调节 调节 AIM 的机械性能可用于治疗或预防血液疾病。我们建议 使用最先进的分析生物物理工具来测试这一潜在的范式转变假设,包括 单分子力谱、单分子荧光显微镜和全原子分子 动力学模拟。将追求三个具体目标来检验这些假设。目标 1 是表征 AIM 的结构和生物力学特性。目标 2 是确定 O-连接如何调节自抑制 AIM 中的糖基化。目标 3 是研究 AIM 在 2B 型 VWD 和治疗应用中的作用。 完成拟议的研究将确定关键的分子和生物物理机制 AIM 机械调节 VWF 功能和血小板结合,有助于设计新的治疗方法 预防和治疗人类血液疾病的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaohui Zhang其他文献

Xiaohui Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaohui Zhang', 18)}}的其他基金

Mechanical regulation of von Willebrand factor
血管性血友病因子的机械调节
  • 批准号:
    10756265
  • 财政年份:
    2023
  • 资助金额:
    $ 60.69万
  • 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
  • 批准号:
    10376469
  • 财政年份:
    2022
  • 资助金额:
    $ 60.69万
  • 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
  • 批准号:
    10551879
  • 财政年份:
    2022
  • 资助金额:
    $ 60.69万
  • 项目类别:
Single-cell analysis of endothelial mechanotransduction mediated by endothelial surface glycocalyx
内皮表面糖萼介导的内皮机械转导的单细胞分析
  • 批准号:
    10733119
  • 财政年份:
    2020
  • 资助金额:
    $ 60.69万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.69万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.69万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.69万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 60.69万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 60.69万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 60.69万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 60.69万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 60.69万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 60.69万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 60.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了