Mechanistic neural circuit models and principles
机械神经回路模型和原理
基本信息
- 批准号:10294675
- 负责人:
- 金额:$ 47.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAnatomyAnimalsArchitectureAttentionBar CodesBehaviorBehavioralBenchmarkingBiologicalBrainBrain regionCellular StructuresCollaborationsCommunicationCoupledDataData AnalysesDecision MakingDevelopmentDimensionsElectrophysiology (science)EnvironmentExperimental DesignsFutureGenetic MarkersGoalsInfrastructureInternationalLaboratoriesLearningLeftLinkMeasurementMethodsModelingMusNeural Network SimulationOutputPerformancePopulationProcessResearch PersonnelRewardsRunningSensoryStandardizationStatistical Data InterpretationStatistical ModelsStimulusStructureSynapsesTask PerformancesTestingTrainingWorkbasecell typedata sharingdesignexperimental studylearning strategynetwork modelsneural circuitneural modelneuromechanismnoveloperationpredictive modelingrecurrent neural networkrelating to nervous systemsensory inputtheoriestool
项目摘要
Summary/Abstract, Project 3
Even in the same environment, an animal may make different decisions on different occasions,
because its internal state, such as engagement in a task, interacts powerfully with external inputs
to determine behavior. This proposal’s overarching goal is to understand how internal states
influence decisions and to identify the underlying neural mechanisms. The team is part of the
International Brain Laboratory (IBL), an established consortium that has developed a
standardized mouse decision-making task and standardized methods for training, neural
measurement, and data analysis, along with a working, scalable infrastructure for sharing
data. The goal of Project 3 is to synthesize the findings of experimental Projects 1, 2, 4, and 5
into circuit-level mechanistic models of the IBL task. The task involves hierarchical, probabilistic
decision-making through sensory evidence integration to make left-right decisions about where
the stimulus is on the current trial, along with integration on a longer timescale to estimate the
slowly varying left-right biases in where the stimuli are more likely to appear. Initial models not
only will be trained to reproduce expert-level task performance, but also will include general
biological constraints on neural dynamics and anatomical connectivity gradients. They will be
analyzed for their learning dynamics, and for which parameters are the handles through which
internal states exert their effects on circuit computation and dynamics. These models will yield
predictions on multiple levels of abstraction: state-space predictions, network structure
predictions, and anatomical predictions. The resulting models will be deployed in a tight loop with
all experimental projects, to guide experimental design; serve as ground-truth testbeds for
perturbative and causal connectivity analysis studies; and link statistical analysis results from data
with mechanistic interpretations. The results of these experiment-model prediction comparisons
will then be used to further refine and elaborate the models. Project 3 researchers will incorporate
the experimentally derived neural activity data, causal connectivity by anatomical region data, and
structural cell-type and connectivity data to further constrain the models. Finally, Project 3 will
also generate highly simplified abstract neural circuit models, using novel methods of model
compression to elucidate the general principles underlying hierarchical decision-making in the
brain. All this work involves the use and de novo development of cutting-edge modeling,
statistical, and data analysis tools. The work of Project 3 will thus deliver a mechanistic circuit-
level understanding of this proposal’s overarching hypothesis that information flow and
communication across brain regions during decision-making depends on internal state.
摘要/摘要,项目3
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ila R. Fiete其他文献
Ila R. Fiete的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ila R. Fiete', 18)}}的其他基金
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10396142 - 财政年份:2021
- 资助金额:
$ 47.38万 - 项目类别:
Mechanistic neural circuit models and principles
机械神经回路模型和原理
- 批准号:
10669698 - 财政年份:2021
- 资助金额:
$ 47.38万 - 项目类别:
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10463855 - 财政年份:2021
- 资助金额:
$ 47.38万 - 项目类别:
CRCNS: Computational principles of mental simulation in the entorhinal and parietal cortex
CRCNS:内嗅和顶叶皮层心理模拟的计算原理
- 批准号:
10630321 - 财政年份:2021
- 资助金额:
$ 47.38万 - 项目类别:
Mechanistic neural circuit models and principles
机械神经回路模型和原理
- 批准号:
10461999 - 财政年份:2021
- 资助金额:
$ 47.38万 - 项目类别:
Neural ensembles underlying natural tracking behavior
自然跟踪行为背后的神经集合
- 批准号:
9218710 - 财政年份:2015
- 资助金额:
$ 47.38万 - 项目类别:
Neural ensembles underlying natural tracking behavior
自然跟踪行为背后的神经集合
- 批准号:
9012581 - 财政年份:2015
- 资助金额:
$ 47.38万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 47.38万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 47.38万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Studentship














{{item.name}}会员




