Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
基本信息
- 批准号:10295749
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAlgorithmsArchitectureArteriesArtificial IntelligenceBlood PressureBlood flowBrainCardiometabolic DiseaseCardiovascular DiseasesCerebrovascular DisordersCessation of lifeCharacteristicsCholesterolClassificationClinicalCodeCohort StudiesCoronary heart diseaseDNADataData StoreDevelopmentDiabetes MellitusDiagnosisDisease OutcomeElectronic Health RecordEnvironmental Risk FactorFunctional disorderGeneticGenetic RiskGenomicsGenotypeHeartHeart DiseasesHereditary DiseaseHeritabilityHeterogeneityIndividualIschemic StrokeKnowledgeLeadLegLipidsLiteratureModelingMorbidity - disease rateMyocardial InfarctionNon-Insulin-Dependent Diabetes MellitusOnset of illnessOutcomePatternPeripheral arterial diseasePersonsPharmaceutical PreparationsPhenotypePopulationPrincipal Component AnalysisProceduresPublishingQuality of lifeRiskRisk FactorsSmokingStatistical ModelsStrokeStructureSubgroupSusceptibility GeneTestingVariantVascular DiseasesVeteransWorkbasebiobankcardiometabolismcardiovascular disorder preventioncardiovascular disorder riskcardiovascular risk factorclinical data warehouseclinical heterogeneityclinical riskdata warehousedesigndiabeticdisease phenotypegenetic informationgenetic variantgenome wide association studyglycemic controlhealth care service utilizationheart disease riskhigh dimensionalityhigh riskhigh risk populationimprovedinnovationlifestyle factorslimb lossmortalitymultidimensional datanovelnovel therapeuticspersonalized risk predictionphenomephenomicsphenotypic datapolygenic risk scoreprecision medicineprematurepreventprogramsrisk predictionstemstructural genomicstrait
项目摘要
Type 2 diabetes (T2D) and cardiovascular disease (CVD) are among the leading causes of morbidity and
mortality in US Veterans, as well as the US population at large. T2D is a widely-recognized risk factor for CVD,
and T2D leads to worse CVD outcomes. However, there remains considerable clinical heterogeneity among
individuals with T2D. Even among individuals with apparently similar glycemic control, there is significant
variability with respect to who will develop CVD. To develop more effective strategies to prevent CVD in this
high-risk population, better approaches for quantifying CVD risk are needed. Using novel computational
approaches, we will consider dense phenotype and genotype data to identify the subpopulations of individuals
with T2D who are at the highest risk of heart and vascular disease. In Aim 1, the relationship between traditional
CVD risk factors, such as cholesterol, blood pressure, and smoking, and three heart and vascular disease
phenotypes: peripheral artery disease (PAD), coronary heart disease (CHD), and cerebrovascular disease, will
be tested. To account for the fact that these outcomes frequently occur in the same individuals, statistical models
that treat the traits as correlated-within person outcomes will be used. To determine if the addition of genetic
information improves the prediction of CVD outcomes, the impact of genetic risk scores, based on preliminary
studies from the VA Million Veteran Program and other published work, on the models will be assed. In Aim 2
dense phenotype data will be extracted from the electronic health record and novel artificial intelligence based
biclustering algorithms will be used to identify hidden subtypes of T2D. The association of these subtypes with
CVD outcomes will then be assessed. In Aim 3, a similar approach will be taken to elaborate T2D subtypes
based on DNA variants known to associate with T2D, CVD, and their risk factors. Finally, the genetic and
phenotypic data will be jointly considered. These approaches will be applied across data from both US Veterans,
using the Veterans Aging Cohort Study and the VA population at large (via the Corporate Data Warehouse), and
non-Veterans, using data from the PennMedicine BioBank, Penn Data Store, and UK Biobank. Successful
completion of this project will help to elucidate the phenotype structure of T2D and identify individuals at the
highest risk of T2D. These results will lay the ground work for developing tailored strategizes for CVD prevention
in T2D and help realize the promise of precision medicine for heart and vascular disease.
2型糖尿病(T2D)和心血管疾病(CVD)是发病的主要原因,
美国退伍军人的死亡率,以及整个美国人口。2型糖尿病是一个广泛认可的心血管疾病的危险因素,
而T2D会导致更糟糕的CVD结果。然而,在这些患者中仍存在相当大的临床异质性。
T2D患者。即使在血糖控制明显相似的个体中,
对于谁将发展CVD的可变性。为了制定更有效的策略来预防心血管疾病,
对于高危人群,需要更好的方法来量化CVD风险。使用新的计算
方法,我们将考虑密集的表型和基因型数据,以确定个体的亚群
2型糖尿病患者是心脏和血管疾病的高危人群。目标1:传统
心血管疾病的危险因素,如胆固醇、血压和吸烟,以及三种心脏和血管疾病
表型:外周动脉疾病(PAD)、冠心病(CHD)和脑血管疾病,
得到考验为了解释这些结果经常发生在同一个人身上的事实,统计模型
将特征视为相关的人内结果将被使用。为了确定基因的添加是否
信息改善了CVD结果的预测,遗传风险评分的影响,基于初步的
研究从VA百万退伍军人计划和其他出版的工作,对模型将被评估。在目标2中
密集的表型数据将从电子健康记录中提取,
双聚类算法将用于识别T2D的隐藏亚型。这些亚型与
然后将评估CVD结果。在目标3中,将采用类似的方法来阐述T2D亚型
基于已知与T2D,CVD及其风险因素相关的DNA变异。最后,基因和
将共同考虑表型数据。这些方法将应用于美国退伍军人的数据,
使用退伍军人老龄化队列研究和VA人群(通过企业数据仓库),以及
非退伍军人,使用来自PennMedicine BioBank,Penn Data Store和UK Biobank的数据。成功
该项目的完成将有助于阐明T2D的表型结构,并确定在
T2D风险最高这些结果将为制定量身定制的CVD预防策略奠定基础
并帮助实现心脏和血管疾病精准医疗的承诺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Michael Damrauer其他文献
Scott Michael Damrauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Michael Damrauer', 18)}}的其他基金
Impact of PCSK9 inhibition on abdominal aortic aneurysm pathobiology and growth
PCSK9 抑制对腹主动脉瘤病理学和生长的影响
- 批准号:
10566800 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Leveraging the Genetics of carotid stenosis for identifying novel risk factors and therapeutic opportunities
利用颈动脉狭窄的遗传学来识别新的危险因素和治疗机会
- 批准号:
10589557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10710159 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Precision Cardio-Metabolic Phenotyping for Genetic Discovery and Risk Prediction
用于基因发现和风险预测的精准心脏代谢表型分析
- 批准号:
10409699 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
-- - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
-- - 项目类别: