Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
基本信息
- 批准号:10301239
- 负责人:
- 金额:$ 45.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAdverse eventAffectAmericanAtherosclerosisBenefits and RisksBloodBlood VesselsCalciumCardiacCharacteristicsClinicalClinical effectivenessDataDatabasesDiabetes MellitusDiagnosisDietary MagnesiumEffectivenessElectronic Health RecordEligibility DeterminationEnzymesEquilibriumFunctional disorderGoalsHealthHealth BenefitHeart failureHospitalizationHumanHypomagnesemiaImpairmentIndividualInflammationInsulin ResistanceIntakeInvestigationKnowledgeLaboratory AnimalsLinkLong-Term EffectsLongterm Follow-upMachine LearningMagnesiumMagnesium DeficiencyMarketingMeasuresMedical RecordsMethodologyMg supplementationMineralsModalityModelingObservational StudyOralOutcomePathway interactionsPatientsPatternPharmacoepidemiologyPilot ProjectsPolypharmacyPopulationPublic HealthRandomized Controlled TrialsReportingRiskRisk FactorsSafetySample SizeSerumSerum magnesium level observedStructural ModelsSystemTechniquesTechnologyTestingTimeUnited States Department of Veterans AffairsUnited States Food and Drug AdministrationUnited States National Institutes of HealthVeteransVeterans Health AdministrationWeightWorkactive comparatorbasecohortcostdeep learningdesigndiabetes riskdietary supplementsendothelial dysfunctionfollow-uphigh riskimprovedimproved outcomeindividual patientinsulin sensitivityinterestmortalitymortality riskmultiple chronic conditionsnovelpersonalized decisionphenotypic datapillprecision medicinepredictive modelingprospectiverandomized controlled designrisk prediction modeltherapeutic effectivenesstool
项目摘要
Project Summary/Abstract
Over half of adult Americans use dietary supplements. However, little is known about their safety
and effectiveness as these products are not approved by the US Food and Drug Administration
(FDA) and post-marketing surveillance is limited to adverse events. The NIH Office of Dietary
Supplements (ODS) seeks to fill in that gap and has identified electronic health record (EHR) data
as a potential tool to advance that goal. Preliminary data from our pilot study sponsored by the
NIH ODS that used advanced machine/deep learning techniques suggest that magnesium
supplements may lower the risk of heart failure (HF) in patient with diabetes mellitus (DM) and
may improve outcomes in those with HF. Both HF and DM affect the health and outcomes of
millions of Americans. DM is a risk factor for HF and adversely affects outcomes in those with HF.
Magnesium is an integral part of over 300 human enzyme systems, which are impaired in
magnesium deficiency. Findings from our study suggest that a low dietary magnesium intake is
associated with a higher risk of incident HF, especially among those with DM. However, less is
known about this relationship in patients with HF. The Specific Aims 1 and 2 of the proposed
projects are to test the hypotheses that a new prescription for oral magnesium supplement is
associated with a lower risk of incident HF in those with DM and of mortality and hospitalization
in patients with HF. Although magnesium is inexpensive and relatively safe, its long-term effects
may vary for individual patients. Thus, instead of recommending it to millions of patients, it would
be ideal to recommend to individuals who are most likely to benefit. Thus, our Specific Aim 3 is to
develop and validate a novel explainable deep learning-based risk prediction model to determine
with precision the optimal clinical setting under which an individual may derive clinical benefits
from magnesium supplementation given their individual characteristics including multimorbidity
and polypharmacy. These aims will be achieved by interrogating the Veterans Affairs (VA)
national EHR data that includes over 2 million Veterans with DM and 1 million with HF with ~20
years of longitudinal data on magnesium supplements, serum magnesium, and outcomes. We
will use a new-user design, marginal structural model (propensity score weighting) with machine-
learning-based estimation and stability analyses to minimize confounding and account for
potential biases. The prediction model for individual risk/benefit will be validated using the Cerner
Health Facts® data for generalizability in non-Veteran populations. The findings of proposed study
will generate new evidence that will have direct clinical implications and those of Aim 3 specifically
will provide a novel precision medicine tool to individualize magnesium supplement use.
项目摘要/摘要
超过一半的美国成年人使用膳食补充剂。然而,人们对它们的安全性知之甚少。
和有效性,因为这些产品没有得到美国食品和药物管理局的批准
(FDA)和上市后监测仅限于不良事件。美国国立卫生研究院饮食办公室
补充剂(Ods)试图填补这一空白,并确定了电子健康记录(EHR)数据
作为推进这一目标的潜在工具。初步数据来自我们由
使用先进的机器/深度学习技术的NIH ods表明,镁
补充剂可降低糖尿病患者心力衰竭(HF)的风险
可能会改善心力衰竭患者的预后。心力衰竭和糖尿病都会影响健康和预后
数百万美国人。糖尿病是心力衰竭的危险因素,对心力衰竭患者的预后有不利影响。
镁是300多种人体酶系统的组成部分,这些酶系统在
缺镁。我们的研究结果表明,饮食中低镁摄入量
与发生心力衰竭的风险较高有关,特别是在糖尿病患者中。然而,更少的是
已知心衰患者存在这种关系。建议的具体目标1和2
项目是测试一种口服补镁新处方的假设
糖尿病患者发生心力衰竭的风险较低,死亡率和住院风险较低
在心力衰竭患者中。虽然镁价格便宜,而且相对安全,但它的长期影响
可能会因个别患者而有所不同。因此,它不会向数百万患者推荐它,而是
最适合推荐给最有可能受益的个人。因此,我们的具体目标3是
开发并验证一种新的基于深度学习的可解释风险预测模型,以确定
准确地说,个人可以从中获得临床益处的最佳临床环境
来自镁补充剂,因为它们的个体特征包括多发病
和多家药房。这些目标将通过审问退伍军人事务部(VA)来实现
国家电子病历数据,包括200多万患有糖尿病的退伍军人和100万患有~20岁的心力衰竭的退伍军人
多年来关于镁补充剂、血清镁和结果的纵向数据。我们
将使用新用户设计、边际结构模型(倾向分数加权)和机器-
基于学习的估计和稳定性分析,以最大限度地减少混杂和考虑
潜在的偏见。对个人风险/收益的预测模型将使用Cerner进行验证
健康事实®数据,用于非退伍军人群体的概括性。拟议研究的结果
将产生新的证据,这些证据将具有直接的临床意义,特别是目标3的那些
将提供一种新颖的精准医学工具,使镁补充剂的使用个性化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI AHMED其他文献
ALI AHMED的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI AHMED', 18)}}的其他基金
Understanding CNS Stimulant Use and Safety in Veterans with TBI
了解患有 TBI 的退伍军人的中枢神经系统兴奋剂使用和安全性
- 批准号:
10538168 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
MWAS+ – A Novel Drug Repurposing Strategy for ADRD Prevention
MWAS — 预防 ADRD 的新型药物再利用策略
- 批准号:
10446705 - 财政年份:2022
- 资助金额:
$ 45.96万 - 项目类别:
MWAS+ – A Novel Drug Repurposing Strategy for ADRD Prevention
MWAS — 预防 ADRD 的新型药物再利用策略
- 批准号:
10677666 - 财政年份:2022
- 资助金额:
$ 45.96万 - 项目类别:
Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
- 批准号:
10489843 - 财政年份:2021
- 资助金额:
$ 45.96万 - 项目类别:
Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
- 批准号:
10672376 - 财政年份:2021
- 资助金额:
$ 45.96万 - 项目类别:
Improving Outcomes in Veterans with Heart Failure and Chronic Kidney Disease
改善患有心力衰竭和慢性肾脏病的退伍军人的预后
- 批准号:
10186538 - 财政年份:2019
- 资助金额:
$ 45.96万 - 项目类别:
Neurohormonal Blockade and Outcomes in Diastolic Heart Failure
舒张性心力衰竭的神经激素阻断和结果
- 批准号:
7929469 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Neurohormonal Blockade and Outcomes in Diastolic Heart Failure
舒张性心力衰竭的神经激素阻断和结果
- 批准号:
7699418 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Heart failure, chronic kidney disease, and renin-angiotensin system inhibition
心力衰竭、慢性肾脏疾病和肾素-血管紧张素系统抑制
- 批准号:
7837545 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Heart failure, chronic kidney disease, and renin-angiotensin system inhibition
心力衰竭、慢性肾脏疾病和肾素-血管紧张素系统抑制
- 批准号:
7433751 - 财政年份:2006
- 资助金额:
$ 45.96万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 45.96万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)