Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials

用动态生物材料阐明纤维化对衰老干细胞的影响

基本信息

  • 批准号:
    10299996
  • 负责人:
  • 金额:
    $ 12.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Despite the ubiquitous role of fibrosis in tissue dysfunction arising from aging and disease, no representative in vitro model of the fibrotic microenvironment exists. Fibrosis is characterized by excess extracellular matrix (ECM) deposition that stiffens the cellular microenvironment. Therefore, to model fibrosis in vitro, cell culture substrates that permit quantitative, dynamic tuning of matrix mechanics and composition are necessary. However, existing dynamic hydrogel culture platforms generally rely on chemistries that may be toxic to cells or that simultaneously change multiple parameters, making it difficult to assign causal relationships between altered matrix properties and cell fate changes. Fibrotic stiffening occurs in a wide range of tissues, including skeletal muscle. Along with increased fibrosis, the regenerative function of skeletal muscle decreases with aging. Muscle stem cells (MuSCs) are responsible for maintaining and repairing muscle throughout life and are known to be acutely mechanosensitive, losing their stem cell potential when cultured on stiff substrates. Thus, the stiffened, fibrotic microenvironment may contribute to the diminished regenerative capacity of aged MuSCs. The goal of this project is to develop an in vitro model of tissue fibrosis based on dynamic hydrogel biomaterials and to employ this model to identify molecular mechanisms of MuSC mechanosensing that are implicated in MuSC dysfunction in aging. The mentored phase of this proposal will provide advanced technical training in aging biology, transgenic mouse models, cellular traction force measurement, and machine learning approaches for bioinformatics. This training will enable an independent research program leveraging dynamic biomaterials to deconvolve the complex interactions of mechanical forces, matrix biochemistry, and cell-cell signaling that dictate the progression of aging and disease. Additional structured training in scientific writing, grantsmanship, and research management will facilitate the transition to independence, supported by a committee of faculty from the Stanford Schools of Medicine and Engineering. Aim 1 will optimize a synthetic hydrogel system that uses near-infrared light and bioorthogonal reactions to dynamically stiffen the gels, mimicking fibrosis. These hydrogels will be used to elucidate mechanisms of mechanosensing in MuSCs, using FRET-based force sensors and transgenic mouse models. Aim 2 will model muscle aging in vitro, using dynamically stiffening gels modified with ECM components characteristic of aging. Single cell RNA sequencing and machine learning bioinformatics approaches will identify unique mechanically regulated drivers of cell fate that reduce MuSC regenerative potential in aging. Aim 3 will develop novel materials for 3D cell culture with dynamic tuning of viscoelastic properties to establish the first human model of muscle “aging in a dish.” This project stands to identify new therapeutic targets to improve muscle function with aging and to develop engineered platforms to study numerous heritable diseases and aging in diverse tissues.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Matthew Madl其他文献

Christopher Matthew Madl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Matthew Madl', 18)}}的其他基金

Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10469664
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10740968
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
  • 批准号:
    9232900
  • 财政年份:
    2015
  • 资助金额:
    $ 12.02万
  • 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
  • 批准号:
    8909603
  • 财政年份:
    2015
  • 资助金额:
    $ 12.02万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 12.02万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了