Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
基本信息
- 批准号:10301622
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdrenergic AgentsAdultAdvisory CommitteesAffectAmericanAnisotropyArteriesBindingBiochemicalBiologyBiomechanicsBiosensorBlood PressureBlood VesselsCalcium SignalingCaliberCell Differentiation processCell physiologyCellsCessation of lifeCollagenCollagen Type IVComplexCuesCustomDepositionDevelopmentDevelopment PlansDiseaseDisease ProgressionDisease modelDrug ScreeningEndothelial CellsEndotheliumEngineeringExtracellular MatrixExtracellular Matrix ProteinsFibronectinsFluorescenceFluorescence MicroscopyFoundationsG-Protein-Coupled ReceptorsGeometryGoalsGrowth FactorHealthHealth Care CostsHydrogelsHypertensionImage AnalysisImpairmentInstitute of Medicine (U.S.)InvestigationKnowledgeLamininMeasuresMechanicsMediatingMentorsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMolecular and Cellular BiologyMorbidity - disease rateMusOptical Coherence TomographyPathologicPatternPerfusionPharmacological TreatmentPharmacologyPhasePhenotypePhysiologicalPopulationPrintingProductionPropertyProteomicsPulsatile FlowReceptor SignalingResearchResistanceResource DevelopmentRisk FactorsSignal TransductionSiliconesSmooth Muscle MyocytesStimulusStructureSystemTechnologyTestingTimeTissue EngineeringTissuesTrainingTunica AdventitiaTunica IntimaUniversitiesVascular DiseasesVascular Endothelial Growth FactorsVascular Smooth MuscleWorkbasebioprintingblood pressure reductioncareercareer developmentcell dedifferentiationdesignfluid flowfluorescence imagingimprovedin vivomechanical propertiesmolecular pathologymonolayermortalitynanomechanicsnew technologynovelorgan on a chippressurequantitative imagingreceptorresponsesensorthree dimensional structuretissue support frametooltraffickingvascular smooth muscle cell proliferationvascular tissue engineeringvasoconstriction
项目摘要
Project Summary/Abstract
Hypertensive vascular disease is a leading global risk factor for morbidity and mortality, affecting over 116
million people. It is characterized by alterations to extracellular matrix (ECM) composition, biomechanical
properties, and aberrant molecular signaling leading to increased blood pressure and vessel stiffening. Extensive
work has focused on developing improved pharmacological treatments, tissue engineered blood vessels, and
vascularizing engineered volumetric tissue, but often overlook the interdependence between cellular signaling
and biomechanical forces leading to disease. Understanding the relationship between ECM biomechanics and
receptor signaling, and developing tools to manipulate it, are essential for creating a healthy, mature vascular
tissue while avoiding pathological changes. Here I propose that incorporation of spatially defined ECM
composition and cellular alignment into a vascular-inspired 3D bioprinted tissue scaffold will produce an
engineered small artery that physiologically controls vascular tone and facilitates investigation into how ECM
composition and altered receptor trafficking impair vascular reactivity and promote a hypertensive phenotype. I
will utilize two novel platforms: FRESH 3D bioprinting to directly fabricate perfusable vasculature from ECM
proteins, and a fluorescence-based nanomechanical biosensor (NMBS) for mapping in vivo tissue strain and
vascular smooth muscle contractility to Aim 1: Develop a collagen-based 3D bioprinted vascular microfluidic
platform integrating controlled fluid flow and endothelialization to replicate vascular ECM biomechanics and
endothelial barrier function; Aim 2: Directly pattern ECM structure and cellular organization using FRESH
printing in a layer-by-layer manner to recapitulate resistance artery vascular smooth muscle cell and endothelial
cell function; and Aim 3:Investigate how pathologic changes in the ECM alters receptor trafficking and impairs
vascular reactivity using novel bioinks to replicate a healthy and hypertensive vessel ECM composition and
material properties. This proposal seeks to enhance our knowledge of the interplay between biomechanical
forces biochemical signaling during vascular development and hypertensive disease progression. The
microfluidics (K99) and engineered vascular tissues (R00) created will have wide utility for drug screening and
disease modeling. The career development plan, under the guidance of co-mentors Drs. Feinberg and Kleyman,
and my advisory committee, will provide advanced training in microfluidics, biomechanical analysis, and vascular
biology/disease modeling. The mentored phase capitalizes on an inter-disciplinary mentoring team and
substantial research and professional development resources at Carnegie Mellon University, the University of
Pittsburgh, and the Vascular Medicine Institute. This K99/R00, combined with my prior expertise in 3D
bioprinting, advanced fluorescence microscopy, quantitative image analysis, and cellular/molecular biology, will
facilitate my transition to an independent career focused on how ECM composition and structure alter receptor
signaling to drive tissue maturation and disease progression.
项目总结/摘要
高血压血管疾病是全球发病率和死亡率的主要风险因素,影响超过116
万人.其特征在于细胞外基质(ECM)组成、生物力学和生物相容性的改变。
性质和异常分子信号传导导致血压升高和血管硬化。广泛
工作集中在开发改进的药物治疗,组织工程血管,
血管化工程体积组织,但往往忽视了细胞信号之间的相互依赖性
和生物力学力量导致疾病。了解ECM生物力学与
受体信号传导,以及开发操纵它的工具,对于创造一个健康,成熟的血管是必不可少的。
组织,同时避免病理变化。在这里,我建议将空间定义的ECM
组合物和细胞排列到血管启发的3D生物打印组织支架中将产生一种生物相容性。
工程化的小动脉,在生理上控制血管张力,并有助于研究ECM如何
组成和改变的受体运输损害血管反应性并促进高血压表型。我
将利用两个新的平台:FRESH 3D生物打印直接从ECM制造可灌注的血管系统
蛋白质,和基于荧光的纳米机械生物传感器(NMBS),用于映射体内组织应变和
血管平滑肌收缩性目标1:开发基于胶原蛋白的3D生物打印血管微流体
整合受控流体流动和内皮化以复制血管ECM生物力学的平台,
内皮屏障功能;目的2:使用FRESH直接模式化ECM结构和细胞组织
以逐层打印的方式重现阻力动脉血管平滑肌细胞和内皮细胞,
目的3:研究ECM的病理变化如何改变受体的运输和损伤
使用新型生物墨水复制健康和高血压血管ECM组合物的血管反应性,
材料性能。该提案旨在增强我们对生物力学之间相互作用的了解
在血管发育和高血压疾病进展过程中迫使生物化学信号传导。的
微流体(K99)和工程化血管组织(R 00)将广泛用于药物筛选,
疾病建模在共同导师Feinberg和Kleyman博士的指导下,
和我的顾问委员会,将提供先进的培训,在微流体,生物力学分析,和血管
生物学/疾病建模。辅导阶段利用跨学科辅导小组,
卡内基梅隆大学的大量研究和专业发展资源
匹兹堡和血管医学研究所。这个K99/R 00,结合我以前在3D方面的专业知识,
生物打印,先进的荧光显微镜,定量图像分析和细胞/分子生物学,将
促进我过渡到一个独立的职业生涯,专注于ECM组成和结构如何改变受体
信号传导以驱动组织成熟和疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel J Shiwarski其他文献
Daniel J Shiwarski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel J Shiwarski', 18)}}的其他基金
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10468156 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 11.1万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 11.1万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant