Adaptive Messaging to Support Depression Self-Management
支持抑郁症自我管理的自适应消息传递
基本信息
- 批准号:10301596
- 负责人:
- 金额:$ 17.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAlgorithmsAnxietyBehaviorBehavior TherapyBehavioralCellular PhoneClinicalClinical SciencesCognitiveCommunicationControl GroupsDataDimensionsEcological momentary assessmentEducational workshopEffectivenessEffectiveness of InterventionsEnvironmentFeedbackFeeling suicidalFundingGoalsGrowthHealth systemIndividualInterventionInterviewLearningMachine LearningMediationMental DepressionMental HealthMentorsMethodologyModalityModelingMonitorMorbidity - disease rateMotivationOutcomeParticipantProceduresProgram DevelopmentPsychological reinforcementQuality of lifeRandomizedRandomized Controlled TrialsRecommendationRegulationResearchScienceSelf ManagementSeveritiesSocial InteractionSocial supportSocietiesSystemTechniquesTechnologyTestingText MessagingTimeTrainingUniversitiesWaiting Listsadaptive interventionbasebehavior changecareercareer developmentcostdepressive symptomsdesigndigital healthdigital mental healtheffectiveness trialevidence baseimprovedintervention refinementlearning algorithmmedical schoolsmeetingsmortalitypreferenceprimary outcomepsychoeducationrandomized trialrecruitresponsesecondary outcomeskillssuccesstailored messagingtherapy designtooltreatment effectusabilityuser centered design
项目摘要
Summary
Automated messaging has significant potential to extend access to guidance and support for those managing
common mental health conditions like depression. However, benefits of automated messaging could be
improved through building capacity to automatically adapt messaging approaches to users’ needs. The PI’s
career goal is to establish scalable digital mental health interventions that deliver individualized communication
to maximize users’ engagement in effectively managing mental health concerns. This proposal outlines training
and research plans to achieve this goal, culminating in a successful R01 proposal. The training plan takes full
advantage of the strong institutional support and environment at Northwestern University's Feinberg School of
Medicine and the Center for Behavioral Intervention Technologies, which is led by the primary mentor for this
proposal. Training goals necessary to the PI’s career goal include growth in (1) user-centered design, (2)
adaptive interventions, and (3) clinical science methodologies. This proposal builds on the PI’s background in
communication science, which has focused on effective message design and social support provision. In this
K01, the PI will aim to develop a model for delivering automated, individualized self-management support for
depression, emphasizing messaging that can accommodate fluctuations in users’ motivations and abilities to
carry out cognitive and behavioral self-management strategies. This will be achieved through the following
specific aims: (1) conduct user-centered design activities and usability testing to design and refine a
messaging system; (2) integrate a reinforcement learning algorithm into the system that adapts content to
users and their contexts; and (3) pilot procedures and analyses for a randomized controlled trial and obtain
preliminary evidence of the intervention’s effectiveness and mechanisms of action. For Aim 3, I will test
hypotheses that messaging interventions will result in greater reduction in depression than a waitlist control
group, and that adaptive messaging will reduce depression relative to non-adaptive messaging by producing
greater engagement in self-management. This research is expected to advance the design of messaging
interventions for depression, ultimately extending the reach and effectiveness of these interventions. Skills
acquired by carrying out the research proposed in this application will allow the PI to successfully compete for
R01 funding in order to conduct a larger effectiveness trial.
总结
自动化的消息传递具有很大的潜力,可以为管理人员提供指导和支持
常见的心理健康状况,如抑郁症。然而,自动化消息传递的好处可能是
通过建设自动调整信息传递方法以满足用户需求的能力,使信息传递得到改善。PI的
职业目标是建立可扩展的数字心理健康干预措施,提供个性化的沟通
最大化用户参与有效管理心理健康问题。本提案概述了培训
和研究计划,以实现这一目标,最终在一个成功的R 01提案。培训计划全面展开
西北大学范伯格学院强大的机构支持和环境的优势
医学和行为干预技术中心,这是由主要导师领导的,
提议PI职业目标所需的培训目标包括:(1)以用户为中心的设计,(2)
适应性干预;(3)临床科学方法。该提案建立在PI的背景之上,
传播科学,侧重于有效的信息设计和社会支持的提供。在这
K 01,PI将致力于开发一种模型,为以下人员提供自动化、个性化的自我管理支持:
抑郁症,强调可以适应用户动机和能力波动的信息,
实施认知和行为自我管理策略。这将通过以下方式实现:
具体目标:(1)开展以用户为中心的设计活动和可用性测试,
消息传递系统;(2)将强化学习算法集成到系统中,使内容适应
用户及其背景;(3)随机对照试验的试点程序和分析,并获得
干预措施有效性和作用机制的初步证据。对于目标3,我将测试
假设消息传递干预将导致比等待列表控制更大的抑郁症减少
自适应消息传递相对于非自适应消息传递将通过产生
加强自我管理。这项研究有望推动消息传递的设计
抑郁症的干预措施,最终扩大这些干预措施的范围和有效性。技能
通过开展本申请中提出的研究获得的信息将使PI能够成功竞争
R 01资金,以便进行更大的有效性试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Kornfield其他文献
Rachel Kornfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Kornfield', 18)}}的其他基金
Adaptive Messaging to Support Depression Self-Management
支持抑郁症自我管理的自适应消息传递
- 批准号:
10456924 - 财政年份:2021
- 资助金额:
$ 17.54万 - 项目类别:
Adaptive Messaging to Support Depression Self-Management
支持抑郁症自我管理的自适应消息传递
- 批准号:
10671649 - 财政年份:2021
- 资助金额:
$ 17.54万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 17.54万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 17.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)