Effects of Environment Complexity on Listening Performance in Adult Hearing Aid Users

环境复杂性对成人助听器使用者听力表现的影响

基本信息

  • 批准号:
    10300006
  • 负责人:
  • 金额:
    $ 7.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-10 至 2022-08-21
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Hearing loss is the second most common health condition among adults. Untreated hearing loss is associated with an increased risk of depression, anxiety, social isolation, dementia, and all-cause mortality. Despite this, only 14% of people who would benefit from hearing aids use them. The most common reason adults give for not using hearing aids is that hearing aids do not help them in the very situations they struggle to hear in the most—complex listening environments (CLEs). CLEs are places with many different sound sources, like restaurants. Indeed, restaurants are the most difficult listening environments for the majority of adults with hearing loss. Hearing aid technologies that are designed to improve speech perception in noise, such as noise reduction and directional microphones, show some modest benefits when tested in a laboratory environment. In the real world, however, these technologies show no benefits. Hearing aids can therefore demonstrate efficacy (how well they can work in the best possible scenario, i.e., in a laboratory test), but fail to be effective (how well they work in the real world). We propose that listening environment complexity differences between the lab and the real world drives the hearing aid efficacy-effectiveness gap. We further propose that the effect of environment complexity on listening performance is moderated by cognitive ability, and the benefit of hearing aid features on listening performance is moderated by environment complexity. Our aims are designed to test these hypotheses in the laboratory using controlled experimental paradigms, as well as in the real world using field experiments. The proposed study is informed by information theory, which defines complexity as the amount of information in a communication system. Under this theory, complexity can be measured using entropy to quantify how much information is in the system. Our team will apply this framework to understanding communication in real world CLEs. In Aim 1, we characterize the relationship between complexity, cognitive ability, and hearing aid feature efficacy in the lab using a controlled experimental paradigm. In Aim 2, we characterize the relationship between complexity, cognitive ability, and hearing aid feature effectiveness in the real world using smartphones to record real world environments and deliver surveys to participants, as well as experimental hearing aids that record how features process signals in real-time. The findings from this study will: enhance our understanding of how hearing aid users perceive real world CLEs, extend information theory to quantify the complexity of real world CLEs and its effect on listening performance, provide important insight into the factors that underlie the hearing aid efficacy- effectiveness gap, and provide groundwork that may help guide developments to close the efficacy-effectiveness gap through clinical and engineering approaches. The proposed study directly addresses the NIH/NIDCD's strategic plan priorities to increase our understanding of the interactions among auditory and cognitive functions to help explain perception in real world listening environments and improve hearing aid performance in background noise and real environments.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Jorgen Jorgensen其他文献

Erik Jorgen Jorgensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了