Advanced Image Analysis Tools for Super-Resolved MRI in Small Animals
用于小动物超分辨率 MRI 的高级图像分析工具
基本信息
- 批准号:10303505
- 负责人:
- 金额:$ 21.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:4D MRIAdoptionAgingAlgorithmic AnalysisAlgorithmsAlzheimer&aposs DiseaseAnimal ModelAnimalsAutomationBiocompatible MaterialsBiologicalBiomedical ResearchBrain scanCardiovascular DiseasesClinical DataClinical TrialsCommunitiesDataDevelopmentDiseaseDisease ProgressionEnsureFeedbackFerretsFoundationsFour-dimensionalFutureHumanImageImage AnalysisImaging DeviceImaging TechniquesLabelMagnetic Resonance ImagingMalignant NeoplasmsManualsMasksMeasuresModelingMonitorMusNeurodegenerative DisordersOutcomePathologyPlayProcessProtocols documentationReproducibilityResearchResearch PersonnelResolutionRodentScanningSliceStructureSupervisionTechniquesTestingThickTimeTrainingTranslationsTraumatic Brain InjuryWorkanalysis pipelineanimal imaginganimal model developmentautomated analysisautomated image analysisbasecancer addictioncomputerized toolscostdeep learningdesigndiffusion weightedflexibilityheart imaginghuman datahuman imagingimage processingimaging biomarkerimaging modalityimprovedin vivo imaginginterestmachine learning algorithmmultidimensional datanonhuman primatenovelnovel therapeuticspreclinical trialresponsetooltranslational studytwo-dimensionalusabilityvalidation studiesweb site
项目摘要
SUMMARY
Imaging in animal models plays a key role in biomedical research, enabling both foundational studies for
understanding disease processes, as well as translational studies evaluating novel therapies. In vivo imaging,
in particular, offers the benefits of minimal harm to the animal and opportunities for measuring developmental,
longitudinal changes. Magnetic resonance imaging (MRI) is one of the most extensively used in vivo imaging
modalities because of its excellent sensitivity to a multitude of biological parameters and flexibility with different
animal models, such as rodents, ferrets, and non-human primates. MRI has been used not only to advance
understanding of neurodegenerative diseases, but also aging, cancer, addiction, and cardiovascular disorders.
However, despite the research community’s desire for emulating clinical trials and performing high-throughput
studies, automated analysis of MRI in animal models has significantly lagged state-of-the-art tools that are
available in the analysis of human imaging. A major reason is that most animal MRI acquisitions are two-
dimensional with high in-plane resolution but thick slices, whereas the most powerful image analysis tools work
best on isotropic acquisitions. As a result, many researchers have been resigned to performing analyses
involving laborious, manual delineations.
Our team has recently developed a novel algorithm that uses deep learning to extract isotropic spatial resolution
from a standard anisotropic MRI acquisition possessing without the need for external high-resolution training
data, which is typically unavailable and difficult to procure. The ability to retrospectively recover isotropic spatial
resolution from these two-dimensional MRI acquisitions allows for significantly reduced costs compared to high-
resolution isotropic acquisitions. Moreover, it opens up the possibilities for more advanced analyses by enabling
key image processing algorithms, such as registration and segmentation, to be more accurately performed and
with greater automation. We therefore propose to perform the following Specific Aims in this R21 application: 1)
Optimize and evaluate our deep learning-based unsupervised super-resolution approach for animal MRI; 2)
Develop and evaluate a super-resolution algorithm for higher-dimensional data; 3) Publicly release the
developed tools. Our overarching hypothesis is that the provided tools will enable significantly more sensitive
imaging biomarkers, thereby increasing statistical power and reducing the size and cost of animal studies. The
combination of the proposed resolution enhancement with state-of-the-art techniques for image analysis will also
increase reproducibility by obviating the need for laborious, and potentially inconsistent manual delineations.
Furthermore, these efforts will enable both pre-clinical and clinical trials to be implemented with nearly identical
analysis pipelines. This application is being submitted in response to PAR 19-369, “Development of Animal
Models and Related Biological Materials for Research.”
总结
动物模型中的成像在生物医学研究中起着关键作用,
了解疾病过程,以及评估新疗法的转化研究。体内成像,
特别是提供了对动物伤害最小的益处,
纵向变化。磁共振成像(MRI)是最广泛使用的体内成像之一
由于其对多种生物参数具有出色的敏感性以及对不同生物参数的灵活性,因此具有多种模式
动物模型,如啮齿动物、雪貂和非人灵长类动物。核磁共振成像不仅被用于
了解神经退行性疾病,还有衰老、癌症、成瘾和心血管疾病。
然而,尽管研究界希望模拟临床试验和进行高通量
研究中,动物模型中MRI的自动化分析明显落后于最先进的工具,
可用于人体成像分析。一个主要原因是大多数动物MRI采集是两个-
三维的高平面内分辨率,但厚切片,而最强大的图像分析工具的工作
最适合各向同性采集。因此,许多研究人员已经辞职进行分析,
包括费力的手工描绘。
我们的团队最近开发了一种新颖的算法,利用深度学习来提取各向同性的空间分辨率
从标准各向异性MRI采集,无需外部高分辨率训练,
数据,这通常是不可用的,很难获得。能够回顾性地恢复各向同性空间
这些二维MRI采集的分辨率允许与高分辨率MRI相比显著降低成本。
分辨率各向同性采集。此外,它还为更高级的分析提供了可能性,
关键的图像处理算法,如配准和分割,以更准确地执行,
更大的自动化。因此,我们建议在这次R21申请中执行以下特定目的:1)
优化和评估我们基于深度学习的动物MRI无监督超分辨率方法; 2)
开发和评估高维数据的超分辨率算法; 3)公开发布
开发工具。我们的总体假设是,所提供的工具将使更敏感的
成像生物标志物,从而增加统计能力并减少动物研究的规模和成本。的
所提出的分辨率增强与用于图像分析的最新技术的组合还将
通过消除对费力的和可能不一致的手动描绘的需要来增加再现性。
此外,这些努力将使临床前和临床试验能够以几乎相同的方式实施。
分析管道。本申请是根据PAR 19-369“动物开发”提交的。
模型和相关生物材料的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dzung L Pham其他文献
Dzung L Pham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dzung L Pham', 18)}}的其他基金
Advanced Image Analysis Tools for Super-Resolved MRI in Small Animals
用于小动物超分辨率 MRI 的高级图像分析工具
- 批准号:
10468946 - 财政年份:2021
- 资助金额:
$ 21.8万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8501702 - 财政年份:2010
- 资助金额:
$ 21.8万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8288854 - 财政年份:2010
- 资助金额:
$ 21.8万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8698472 - 财政年份:2010
- 资助金额:
$ 21.8万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8096798 - 财政年份:2010
- 资助金额:
$ 21.8万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
7946018 - 财政年份:2010
- 资助金额:
$ 21.8万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.8万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 21.8万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 21.8万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 21.8万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 21.8万 - 项目类别:
Standard Grant