The Circadian Molecular Clock is a Biomarker for Epilepsy in Focal Cortical Dysplasia

昼夜节律分子钟是局灶性皮质发育不良中癫痫的生物标志物

基本信息

  • 批准号:
    10302615
  • 负责人:
  • 金额:
    $ 8.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The parent R01 is based on our study of medically refractory pediatric epilepsy, where we identified decreased mRNA levels of the transcription factor, Circadian Locomotor Output Cycles Kaput (Clock), compared with non- epileptic brain. Mice with targeted deletion of the Clock gene in excitatory neurons have spontaneous seizures, leading us to hypothesize that loss of Clock leads to circuit dysfunction and epilepsy. In both the parent R01 and the proposed new experiments, we study pediatric epilepsy. In this supplement, we investigate a rare, newly diagnosed form of genetic infantile epilepsy and developmental delay caused by mutations in SLC13A5, a sodium-coupled citrate transporter, using models that we already have in the laboratory, and using the same techniques that we are using in the parent grant i.e. video EEG and whole cell patch-clamp electrophysiology in hippocampal neurons. Slc13a5 mutations result in decreased intracellular citrate levels, indicating metabolic defect. Since we have extended our parent studies of Clock gene into metabolomics, the proposed studies are in keeping with the scope and overall hypothesis that metabolic defects underlie circuit dysfunction in epilepsy. Analysis of Slc13a5 as a less complex, single gene disorder will help us understand important links between metabolic signatures and epilepsy. We generated mouse models containing two of the most commonly found Slc13a5 missense mutations in pediatric patients. Preliminary characterization revealed an unexpected gain-of-function effect of a sodium-binding domain missense mutation i.e. more severe seizures, meeting the definition of status epilepticus, in striking contrast to Slc13a5 gene ablation, which does not produce seizures, indicating altered gene function. We hypothesize that aberrant cortical and hippocampal activity arises from altered neurotransmitter levels and electrophysiological properties at excitatory and inhibitory synapses. We will test our hypothesis in two Aims. In Aim 1, we will investigate changes in epilepsy associated with Slc13a5 mutations in comparison with Slc13a5 ablation. Using video electroencephalogram (EEG), we plan to measure seizure thresholds in these mice, interictal epileptiform abnormalities, epilepsy severity, and baseline EEG patterns. In Aim 2, we will determine neurotransmitter changes associated with Slc13a5 mutations, and identify, by patch-clamp electrophysiology, how altered citrate or TCA cycle intermediates lead to depletion of glutamate and GABA levels. We will also investigate action potential generation threshold, firing patterns, and membrane properties to determine changes in excitatory-inhibitory balance. Analysis of hetero- and homozygous mouse null and missense mutants would help determine how the mutant allele gains function or interferes with normal gene activity. These studies constitute a major part of a thesis project for our URM graduate student, whose multi-disciplinary training plans for career growth as a neuroscience investigator are outlined in this proposal. Understanding the genetic and metabolic mechanisms may lead to new treatments for epilepsy and its associated cognitive and behavioral symptoms.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Judy Shih-Hwa Liu其他文献

Judy Shih-Hwa Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Judy Shih-Hwa Liu', 18)}}的其他基金

ASH1L mediated transcription networks in autism spectrum disorders
自闭症谱系障碍中 ASH1L 介导的转录网络
  • 批准号:
    10733409
  • 财政年份:
    2023
  • 资助金额:
    $ 8.14万
  • 项目类别:
ASH1L mediated transcription networks in autism spectrum disorders
自闭症谱系障碍中 ASH1L 介导的转录网络
  • 批准号:
    10819810
  • 财政年份:
    2023
  • 资助金额:
    $ 8.14万
  • 项目类别:
ASH1L mediated transcription networks in autism spectrum disorders
自闭症谱系障碍中 ASH1L 介导的转录网络
  • 批准号:
    10446686
  • 财政年份:
    2022
  • 资助金额:
    $ 8.14万
  • 项目类别:
The Circadian Molecular Clock is a Biomarker for Epilepsy in Focal Cortical Dysplasia
昼夜节律分子钟是局灶性皮质发育不良中癫痫的生物标志物
  • 批准号:
    10351603
  • 财政年份:
    2021
  • 资助金额:
    $ 8.14万
  • 项目类别:
The Circadian Molecular Clock is a Biomarker for Epilepsy in Focal Cortical Dysplasia
昼夜节律分子钟是局灶性皮质发育不良中癫痫的生物标志物
  • 批准号:
    10625052
  • 财政年份:
    2019
  • 资助金额:
    $ 8.14万
  • 项目类别:
The Circadian Molecular Clock is a Biomarker for Epilepsy in Focal Cortical Dysplasia
昼夜节律分子钟是局灶性皮质发育不良中癫痫的生物标志物
  • 批准号:
    10093151
  • 财政年份:
    2019
  • 资助金额:
    $ 8.14万
  • 项目类别:
The Circadian Molecular Clock is a Biomarker for Epilepsy in Focal Cortical Dysplasia
昼夜节律分子钟是局灶性皮质发育不良中癫痫的生物标志物
  • 批准号:
    10334417
  • 财政年份:
    2019
  • 资助金额:
    $ 8.14万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 8.14万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 8.14万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 8.14万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 8.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 8.14万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 8.14万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 8.14万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 8.14万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 8.14万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 8.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了