Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics

通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像

基本信息

  • 批准号:
    10467225
  • 负责人:
  • 金额:
    $ 85.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-07 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Electrical Impedance Tomography (EIT) is a new medical imaging method which, uniquely, offers a way to image neuronal depolarization in nervous tissue using arrays of external electrodes. In rat cerebral cortex, it has a resolution of <200µm and 1 ms using epicortical electrode arrays during sensory evoked potentials. It has been pioneered by PI David Holder at UCL London who has recently extended it to imaging compound action potential traffic within nerves with a flexible silicone rubber cylindrical cuff. The same cuff may then also be used for selective stimulation of the identified fascicles. This has been supported by Galvani Bioelectronics as it could furnish an essential way to avoid off-target effects in Electroceutical stimulation of autonomic nerve. Until now, it has been undertaken using an external cylindrical cuff with 16-32 electrodes. Spatial resolution is good at the edge of the nerve near the electrodes but decreases towards the centre of the nerve where current density is less. Our objective is to improve spatial resolution by adapting the cuff to have a “cartwheel” design with spokes extending into the interior of the nerve. Penetrating intraneural electrodes are rigid and cause nerve damage, inflammation, and loss of recording ability. However, we mitigate this risk by the use of novel “shape memory polymer” pioneered by co-PI Walter Voit at University of Texas Dallas (UTD). This is rigid at room temperature, so permitting insertion, but becomes flexible at body temperature so that it is biocompatible and does not elicit an inflammatory response. This would permit higher spatial resolution in the interior of the nerve in imaging while also offering a way to achieve selective stimulation of identified fascicles impossible with an external cylindrical cuff alone. In year 1 we will undertake preliminary studies with different electrode materials and a preliminary geometry of 4 spokes with 4 electrodes each. This will be tested in saline filled tanks, sheep vagus ex and in vivo, and rabbit sciatic nerve in vivo. In Year 2, further acute studies in rabbit sciatic and sheep vagus nerve during evoked activity will be undertaken with an improved electrode geometry suggested by modelling and empirical studies in Year 1, with up to 16 spokes with 16 electrodes each. In Year 3, we will evaluate the biocompatibility and performance in imaging in chronic studies over up to 3 months in sheep vagus nerve and an acute pilot study in human vagus nerve in subjects where the nerve is exposed for insertion of a vagal nerve stimulator. In parallel, we will optimise EIT imaging reconstruction methods, combine EIT academic software into a robust package ready for use in clinical trials, and develop a mechanical electrode insertion rig which can be inserted through an endoscope. In all animal studies, performance will be assessed by histology, electrophysiology and EIT imaging. The deliverable will be a novel “cartwheel” electrode design for high resolution EIT imaging in nerve, and a rigorous evaluation of its performance and biocompatibility. We envisage that it will cause negligible nerve damage when used over months and deliver imaging of fascicular compound action potentials throughout the cross section of the nerve with an accuracy of <150µm and 1ms for human vagus nerve.
电阻抗断层扫描(EIT)是一种新型医学成像方法,它独特地提供了一种成像方法 使用外部电极阵列的神经组织中的神经元去极化。在老鼠的大脑皮层中, 分辨率<200µm和1 ms,在感觉诱发电位过程中使用上皮层电极阵列。已经 由伦敦UCL的PI大卫保持器开创,他最近将其扩展到成像复合动作电位 神经内的交通与灵活的硅橡胶圆柱形袖口。然后,相同的袖带也可以用于选择性地测量。 刺激所识别的神经束。这得到了Galvani Bioelectronics的支持,因为它可以提供 避免电刺激植物神经时产生脱靶效应的重要途径。到目前为止, 使用具有16-32个电极的外部圆柱形袖带进行。空间分辨率在边缘处良好, 在电极附近的神经,但减少对神经的中心,电流密度较小。我们的目标 是通过调整袖带以具有“侧手翻”设计来提高空间分辨率, 神经的内部。穿透性神经内电极是刚性的,并且会导致神经损伤、炎症和神经功能丧失。 记录能力。然而,我们通过使用co-PI开创的新型“形状记忆聚合物”来减轻这种风险。 德克萨斯大学达拉斯分校(UTD)的沃尔特·沃伊特。这在室温下是刚性的,因此允许插入,但是 在体温下变得柔软,因此它是生物相容的并且不会引起炎症反应。这 将允许成像中神经内部的更高空间分辨率,同时还提供了一种实现 单独使用外部圆柱形袖带不可能选择性刺激已识别的神经束。 在第一年,我们将对不同的电极材料进行初步研究,并进行初步 4个辐条的几何形状,每个辐条具有4个电极。这将在盐水填充罐、绵羊迷走神经体外和体内进行测试, 兔坐骨神经在体。在第二年,进一步的急性研究,在兔坐骨神经和羊迷走神经诱发 活动将与改进的电极几何形状建议的建模和实证研究, 第1年,最多16个辐条,每个辐条有16个电极。在第3年,我们将评估生物相容性, 在长达3个月的绵羊迷走神经慢性研究和急性初步研究中的成像性能 受试者的人迷走神经,其中神经暴露以插入迷走神经刺激器。同时,我们 将优化EIT成像重建方法,将联合收割机EIT学术软件组合成一个强大的软件包, 用于临床试验,并开发可通过内窥镜插入的机械电极插入装置。 在所有动物研究中,将通过组织学、电生理学和EIT成像评估性能。 可交付成果将是一种新颖的“侧手翻”电极设计,用于神经中的高分辨率EIT成像, 严格评估其性能和生物相容性。我们认为它对神经的损伤可以忽略不计 当使用数月并在整个横截面上传递分支复合动作电位的成像时 对人体迷走神经的测量精度<150µm,1 ms。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography.
通过快速神经电阻抗断层扫描优化周围神经束状复合动作电位成像的电极驱动模式。
  • DOI:
    10.1088/1361-6579/ab54eb
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ravagli E
  • 通讯作者:
    Ravagli E
Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease.
  • DOI:
    10.3389/fnins.2021.667036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Mastitskaya S;Thompson N;Holder D
  • 通讯作者:
    Holder D
Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays.
  • DOI:
    10.1016/j.jneumeth.2021.109140
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Ravagli E;Mastitskaya S;Thompson N;Welle EJ;Chestek CA;Aristovich K;Holder D
  • 通讯作者:
    Holder D
Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography.
  • DOI:
    10.1038/s41467-020-20127-x
  • 发表时间:
    2020-12-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ravagli E;Mastitskaya S;Thompson N;Iacoviello F;Shearing PR;Perkins J;Gourine AV;Aristovich K;Holder D
  • 通讯作者:
    Holder D
Overcoming temporal dispersion for measurement of activity-related impedance changes in unmyelinated nerves.
克服时间分散,测量无髓神经活动相关的阻抗变化。
  • DOI:
    10.1088/1741-2552/ac669a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Tarotin,Ilya;Mastitskaya,Svetlana;Ravagli,Enrico;Perkins,JustinD;Holder,David;Aristovich,Kirill
  • 通讯作者:
    Aristovich,Kirill
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID S HOLDER其他文献

DAVID S HOLDER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID S HOLDER', 18)}}的其他基金

Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 85.36万
  • 项目类别:
Imaging Neuronal Activity using Electrical Impedance Tomography
使用电阻抗断层扫描对神经元活动进行成像
  • 批准号:
    7485104
  • 财政年份:
    2006
  • 资助金额:
    $ 85.36万
  • 项目类别:
Imaging Neuronal Activity using Electrical Impedance Tomography
使用电阻抗断层扫描对神经元活动进行成像
  • 批准号:
    7140785
  • 财政年份:
    2006
  • 资助金额:
    $ 85.36万
  • 项目类别:
Imaging Neuronal Activity using Electrical Impedance Tomography
使用电阻抗断层扫描对神经元活动进行成像
  • 批准号:
    7285552
  • 财政年份:
    2006
  • 资助金额:
    $ 85.36万
  • 项目类别:

相似国自然基金

基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
古菌Ferroplasma sp.在黄铜矿生物浸出中的生态功能
  • 批准号:
    51074195
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
制冷系统故障诊断关键问题的定量研究
  • 批准号:
    50876059
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantitative Imaging Biomarker Prospective Validation of Dynamic Contrast-Enhanced MRI as a Metric of Orodental Injury After Radiotherapy (QI-ProVE-MRI)
动态对比增强 MRI 的定量成像生物标志物前瞻性验证作为放射治疗后口腔牙齿损伤的指标 (QI-ProVE-MRI)
  • 批准号:
    10668570
  • 财政年份:
    2023
  • 资助金额:
    $ 85.36万
  • 项目类别:
Nanoparticle-Enhanced Radiation Therapy for DIPG
DIPG 纳米粒子增强放射治疗
  • 批准号:
    10592202
  • 财政年份:
    2023
  • 资助金额:
    $ 85.36万
  • 项目类别:
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
  • 批准号:
    10646508
  • 财政年份:
    2022
  • 资助金额:
    $ 85.36万
  • 项目类别:
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
  • 批准号:
    10419915
  • 财政年份:
    2022
  • 资助金额:
    $ 85.36万
  • 项目类别:
Tumor-targeted delivery and cell internalization of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy
用于图像引导纳米颗粒增强放射治疗的治疗诊断钆纳米颗粒的肿瘤靶向递送和细胞内化
  • 批准号:
    10457237
  • 财政年份:
    2019
  • 资助金额:
    $ 85.36万
  • 项目类别:
Tumor-targeted delivery and cell internalization of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy
用于图像引导纳米颗粒增强放射治疗的治疗诊断钆纳米颗粒的肿瘤靶向递送和细胞内化
  • 批准号:
    10017981
  • 财政年份:
    2019
  • 资助金额:
    $ 85.36万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 85.36万
  • 项目类别:
Optimizing Ultrasound Enhanced Delivery of Therapeutics
优化超声增强治疗的输送
  • 批准号:
    10217039
  • 财政年份:
    2016
  • 资助金额:
    $ 85.36万
  • 项目类别:
Optimizing Ultrasound Enhanced Delivery of Therapeutics
优化超声增强治疗的输送
  • 批准号:
    9337418
  • 财政年份:
    2016
  • 资助金额:
    $ 85.36万
  • 项目类别:
Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Establish Objective Clinical Outcome Measures for Mandibular Osteoradionecrosis
使用动态对比增强磁共振成像 (DCE-MRI) 建立下颌放射性骨坏死的客观临床结果测量
  • 批准号:
    9894640
  • 财政年份:
    2016
  • 资助金额:
    $ 85.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了