Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
基本信息
- 批准号:10305241
- 负责人:
- 金额:$ 128万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-20 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAllelesAntigen-Presenting CellsAutoimmuneCAST/EiJ MouseCase StudyCell modelCell physiologyCellsClinicalComplexCultured CellsDataDegenerative DisorderDevelopmentDiseaseDisease modelDistantEnhancersEtiologyFibroblastsFunctional disorderGene ExpressionGene Expression RegulationGenesGeneticGenetic PolymorphismGenetic VariationGenomeGenomicsGoalsHereditary DiseaseHeterogeneityHumanHybridsImmuneImmunologyIn SituInflammationInflammatoryJointsKnowledgeLaboratoriesLearningLinkMachine LearningMetabolic DiseasesModelingMolecularMusNatureNetwork-basedOrganizational ModelsPathologyPatientsPhenotypePolygenic TraitsProcessPsychological TransferPublic HealthRegulationRegulator GenesRegulatory ElementRheumatoid ArthritisSamplingSpecific qualifier valueSystemT cell regulationT-LymphocyteTissuesTrainingTranscriptional RegulationVariantarthropathiesautoimmune inflammationcell communitycell typeconnectomedisease phenotypeempoweredepigenetic regulationepigenomeexperimental analysisexperimental studyfunctional genomicsgenetic variantgenomic locusgenomic variationhuman datahuman diseaseintercellular communicationjoint inflammationlearning strategymouse geneticsmultiple omicsnetwork modelsnovelpredictive modelingprogramssedentarytranscription factortranscriptometranscriptomics
项目摘要
Abstract
Natural genetic variation impacts most human diseases, yet predicting how regulatory variants control gene
expression and ultimately disease phenotypes poses considerable challenges. First, the polygenic inheritance
influencing most conditions requires consideration of a vast number of genes and regulatory elements. This
task is challenged by the complexity of gene regulation, where 3D regulatory interactions can link enhancers
and genes over large genomic distances. Second, multiple interacting cell types are often dysregulated in
disease pathology. This necessitates an understanding of how the collective variants associating with a
disease affect each cell type involved in the disease process and subsequently how these dysregulated
cellular phenotypes crossregulate and drive subsequent cellular states. In this IGVF project, we will use
rheumatoid arthritis (RA), a human autoimmune inflammatory disease, as a case study to develop robust
machine learning models of gene regulation to decipher the impact of genomic variation on multiple cellular
drivers of pathology—namely, inflammatory T cell and fibroblast subsets found in affected joint tissue. The
choice of RA is motivated by its public health importance, specified target tissue, access to clinical samples,
considerable knowledge of disease-associated gene loci, and our team’s complementary expertise in machine
learning, RA pathophysiology, immunology and inflammation, and single-cell functional genomics.
We will develop an advanced machine learning framework to model the effects of allelic variation on gene
regulatory networks based on the analysis of epigenomes, transcriptomes, and connectomes of mouse
activated T cells and synovial fibroblasts and extend these models to RA patient joint tissue and primary cells.
We will train allele-specific gene regulatory models (GRMs) that account for long-range regulatory interactions
by integrating single-cell transcriptome and epigenome (sc-multiome) data with bulk 3D interactome analyses.
A notable feature of our approach is that we leverage the genetic diversity of evolutionarily distant F1 hybrid
mice to provide robust training data for these models, and then apply these advances to the human context
through transfer learning. Highly parallelized Perturb-seq experiments in primary synovial fibroblasts from RA
patients with single-cell multiomic readouts will then be used to evaluate and refine regulatory models and to
train network models that connect gene expression programs to phenotype. Finally, we will combine spatial
and single-cell transcriptomics conducted on samples from RA inflamed joints to model the organization and
interactions between T cells and sedentary tissue-organizing fibroblasts within local cellular communities.
The predictive GRMs that will be generated from our study along with the experimental systems for human
disease will be readily transferrable to other polygenic disorders which must consider complex regulatory
genomic networks for various interacting cell types in affected tissues.
摘要
自然遗传变异影响大多数人类疾病,但预测调控变异如何控制基因
表达和最终的疾病表型提出了相当大的挑战。一是多基因遗传
影响大多数病症需要考虑大量的基因和调节元件。这
基因调控的复杂性挑战了这项任务,其中3D调控相互作用可以连接增强子
和大基因组距离上的基因。第二,多种相互作用的细胞类型通常在细胞周期中失调。
疾病病理学这就需要了解如何集体变量关联一个
疾病影响疾病过程中涉及的每种细胞类型,以及随后这些细胞如何失调
细胞表型交叉调节并驱动随后的细胞状态。在这个IGVF项目中,我们将使用
类风湿性关节炎(RA),一种人类自身免疫性炎症性疾病,作为一个案例研究,以开发强大的
基因调控的机器学习模型,以破译基因组变异对多种细胞的影响
病理学的驱动因素,即在受影响的关节组织中发现的炎性T细胞和成纤维细胞亚群。的
选择RA的动机是其公共卫生重要性、特定的靶组织、临床样本的获取,
对疾病相关基因位点的丰富知识,以及我们团队在机器方面的互补专业知识,
学习,RA病理生理学,免疫学和炎症,以及单细胞功能基因组学。
我们将开发一个先进的机器学习框架来模拟等位基因变异对基因的影响,
基于小鼠表观基因组、转录组和连接组分析的调控网络
活化的T细胞和滑膜成纤维细胞,并将这些模型扩展到RA患者关节组织和原代细胞。
我们将训练等位基因特异性基因调控模型(GRM),以解释长程调控相互作用
通过将单细胞转录组和表观基因组(sc-multiome)数据与批量3D相互作用组分析相结合。
我们的方法的一个显着特点是,我们利用进化上遥远的F1杂种的遗传多样性,
小鼠为这些模型提供强大的训练数据,然后将这些进展应用于人类环境
通过迁移学习。在来自RA的原代滑膜成纤维细胞中的高度平行化的Perturb-seq实验
具有单细胞多组学读数的患者将被用于评估和改进调节模型,
训练将基因表达程序与表型联系起来的网络模型。最后,我们将联合收割机空间
和单细胞转录组学进行的样本从RA发炎关节模型的组织和
在局部细胞群落中,T细胞和静止的组织组织成纤维细胞之间的相互作用。
预测GRM将产生从我们的研究沿着与人类的实验系统
疾病将很容易转移到其他多基因疾病,必须考虑复杂的调节
受影响组织中各种相互作用的细胞类型的基因组网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina S Leslie其他文献
Christina S Leslie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina S Leslie', 18)}}的其他基金
The Center for Tumor-Immune Systems Biology at MSKCC
MSKCC 肿瘤免疫系统生物学中心
- 批准号:
10525190 - 财政年份:2022
- 资助金额:
$ 128万 - 项目类别:
The Center for Tumor-Immune Systems Biology at MSKCC
MSKCC 肿瘤免疫系统生物学中心
- 批准号:
10705726 - 财政年份:2022
- 资助金额:
$ 128万 - 项目类别:
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
- 批准号:
10472615 - 财政年份:2021
- 资助金额:
$ 128万 - 项目类别:
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
- 批准号:
10621786 - 财政年份:2021
- 资助金额:
$ 128万 - 项目类别:
Systems biology of the tumor immune microenvironment
肿瘤免疫微环境的系统生物学
- 批准号:
10415307 - 财政年份:2021
- 资助金额:
$ 128万 - 项目类别:
Encoding genomic architecture in the encyclopedia: linking DNA elements, chromatin state, and gene expression in 3D
编码百科全书中的基因组结构:以 3D 形式连接 DNA 元素、染色质状态和基因表达
- 批准号:
10241049 - 财政年份:2017
- 资助金额:
$ 128万 - 项目类别:
Encoding genomic architecture in the encyclopedia: linking DNA elements, chromatin state, and gene expression in 3D
编码百科全书中的基因组结构:以 3D 形式连接 DNA 元素、染色质状态和基因表达
- 批准号:
9247342 - 财政年份:2017
- 资助金额:
$ 128万 - 项目类别:
The CSBC Research Center for Cancer Systems Immunology at MSKCC
MSKCC CSBC 癌症系统免疫学研究中心
- 批准号:
9343109 - 财政年份:2016
- 资助金额:
$ 128万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 128万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 128万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 128万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 128万 - 项目类别:
Studentship