Examining the hierarchical structure of the RDoC framework using large-scale data-driven computational approaches
使用大规模数据驱动的计算方法检查 RDoC 框架的层次结构
基本信息
- 批准号:10306101
- 负责人:
- 金额:$ 67.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-22 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdultAdvocateAffectAgeArchitectureAttentionBase of the BrainBehaviorBehavior assessmentBehavioralBehavioral ParadigmBiologicalBipolar DisorderBrainChildClinicalCognitiveCommunitiesCosts and BenefitsDataData AggregationData AnalysesData AnalyticsData SetDevelopmentDiagnosisDimensionsEffectivenessGeneral PopulationGenesGoalsHyperactivityIndividual DifferencesInstructionMapsMeasuresMethodsNational Institute of Mental HealthNegative ValenceNeuropsychologyNeurosciencesParticipantPathway interactionsPatientsPopulationPositive ValencePsychopathologyPublic HealthResearchResearch Domain CriteriaResearch Project SummariesRestSample SizeSamplingScanningSchizophreniaSiteStructureSyndromeSystemTask PerformancesTranslationsValidationVertebral columnbaseclinical translationcognitive developmentcohortcomputer frameworkconnectomedisease classificationdisorder controlefficacy researchfunctional MRI scaninsightlarge scale dataneuroimagingpatient populationsecondary analysissexspatiotemporal
项目摘要
Project Summary
The Research Domain Criteria (RDoC) applies an integrative, dimensional approach anchored in circuit
neuroscience, genes, molecules, and behaviors. The RDoC framework, currently only for research, ultimately
aims at facilitating the development of psychiatric nosology (disorder-classification system) based upon
primary behavioral functions and their associated biological features that the brain has evolved to carry out.
Although the impetus behind RDoC is in the right direction, for greater efficacy of RDoC in clinical translation, a
data-driven examination is needed to validate and refine the architecture of RDoC. Further, several key
questions remain unanswered. First, as noted in the current RFA (RFA-MH-19-242), since the inception of
RDoC, a thorough data-driven validation that broadly explores, compares, and validates the constructs within
the framework has not been performed. Second, to increase clinical translation of the RDoC framework, it is
essential to assess whether constructs within a domain consistently relate to similar dimensions of
psychopathology. Thus, providing data-driven evidence for the convergent and discriminant validity of the
RDoC framework in predicting psychopathology. Lastly, and perhaps more fundamentally, it is unclear whether
carefully crafted behavioral paradigms are required to examine domain-specific features (behavioral or circuit-
level) or task-free paradigms (e.g., resting-state) can be computationally employed to extract similar domain-
specific features. The lack of task instructions in resting-state paradigms enhances compliance in clinical
populations, makes data aggregation across sites straightforward, and could provide a higher cost-benefit ratio
if a single resting-state scan can provide information that would otherwise require multiple, carefully crafted,
domain-specific neuroimaging task scans. Here, we propose to mine, systemically and computationally, three
large-scale datasets from the general population and diagnosed patient populations to answer critical
questions regarding the validity of the RDoC framework. Specifically, we aim to examine whether: (1) within-
domain constructs overlap more than do between-domain constructs; (2) within-domain constructs relate to
similar dimensions of psychopathology; and (3) task-free paradigms (e.g., resting-state) can be mined to
extract similar domain-specific information that is usually extracted using specific task-based paradigms. By
addressing these three key questions, our central goal is to provide the much-needed bottom-up examination
of the RDoC framework to pave a pathway for its refinement and translation. Our long-term goal is to develop
new computational frameworks to generate converging insights for grounding psychiatric nosology in biological
features. Altogether, without careful data-driven validation, the RDoC framework remains theoretical. Hence,
we advocate for developing a computational backbone for the RDoC framework to validate the assumptions
underlying RDoC and facilitate framework refinement for greater clinical translation.
项目摘要
研究域标准(RDOC)应用了锚定在电路中的集成,维度方法
神经科学,基因,分子和行为。 RDOC框架目前仅用于研究
旨在促进基于精神病学疾病学(疾病分类系统)的发展
大脑已经进化为执行的主要行为功能及其相关的生物学特征。
尽管RDOC背后的动力朝着正确的方向
需要进行数据驱动的检查以验证和完善RDOC的体系结构。此外,有几个钥匙
问题仍未得到答复。首先,如当前RFA(RFA-MH-19-242)所述,自成立以来
RDOC是一种彻底探索,比较和验证内部构造的彻底验证验证
该框架尚未执行。第二,为了增加RDOC框架的临床翻译,这是
必须评估域内的构造是否始终与类似的维度有关
心理病理学。因此,提供数据驱动的证据,以证明
RDOC框架预测心理病理学。最后,也许从根本上讲,尚不清楚是否清楚
精心制作的行为范例需要检查特定领域特异性特征(行为或电路 -
级别)或无任务范例(例如,静止状态)可以用于提取类似的域 -
特定功能。静止状态范式缺乏任务说明可以增强临床的依从性
种群,使跨站点的数据聚集直接,并且可以提供更高的成本效益比
如果单个静止状态扫描可以提供否则需要多个精心设计的信息,
域特异性神经成像任务扫描。在这里,我们建议在系统和计算上开采三个
来自一般人群的大规模数据集和诊断出患者人群以回答关键
有关RDOC框架有效性的问题。具体来说,我们旨在检查:(1)
域构造重叠的重叠量超过域间结构。 (2)域内结构与
类似的心理病理学方面; (3)可以将无任务范式(例如,静止状态)开采到
提取通常使用基于特定任务的范例提取的类似域特异性信息。经过
解决这三个关键问题,我们的中心目标是提供急需的自下而上检查
RDOC框架为其改进和翻译铺平了途径。我们的长期目标是发展
新的计算框架,以生成融合见解,以扎根生物学中的精神病学
特征。总体而言,如果没有仔细的数据驱动验证,RDOC框架仍然是理论上的。因此,
我们主张为RDOC框架开发一个计算主链来验证假设
基础RDOC并促进框架改进,以进行更大的临床翻译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Saggar其他文献
Manish Saggar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Saggar', 18)}}的其他基金
Examining the hierarchical structure of the RDoC framework using large-scale data-driven computational approaches
使用大规模数据驱动的计算方法检查 RDoC 框架的层次结构
- 批准号:
10455569 - 财政年份:2021
- 资助金额:
$ 67.83万 - 项目类别:
Examining the hierarchical structure of the RDoC framework using large-scale data-driven computational approaches
使用大规模数据驱动的计算方法检查 RDoC 框架的层次结构
- 批准号:
10643965 - 财政年份:2021
- 资助金额:
$ 67.83万 - 项目类别:
Quantifying the Fluctuations of Intrinsic Brain Activity in Healthy and Patient Populations
量化健康人群和患者人群内在大脑活动的波动
- 批准号:
9027882 - 财政年份:2015
- 资助金额:
$ 67.83万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 67.83万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 67.83万 - 项目类别: