Computational and Circuit Mechanisms Underlying Rapid Learning

快速学习背后的计算和电路机制

基本信息

  • 批准号:
    10308341
  • 负责人:
  • 金额:
    $ 20.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The mammalian brain has a remarkable ability to store and retrieve information. Detailed memories can be formed after as little as one exposure, and those memories can be retained for decades. This ability is compromised following damage to structures located in the medial temporal lobe, including the hippocampus and the adjacent cortex. Over the past decade, many studies have highlighted interactions between the hippocampus and neocortex, in particular, the prefrontal cortex (PFC) and posterior parietal cortex (PPC), as having an essential role in memory consolidation. However, the circuit mechanisms that support memory consolidation are not well-understood, particularly in the primate brain. Impaired memory is an important component of diseases such as Alzheimer's disease, temporal lobe epilepsy, depression, and schizophrenia that collectively affect over twenty million Americans. Our long-range goal is to contribute to a better understanding of the neural mechanisms that underlie memory processes, in order to bring us closer to developing new therapies for these disabled patients. Psychological theories and behavioral studies have suggested that rapid, single-trial accumulation of information is facilitated by prior knowledge, a cognitive map or “mental schema” that provides a framework onto which new information can be assimilated. This concept is relevant for understanding potential hippocampal-neocortical interactions in the service of memory consolidation. The experiments proposed here will directly examine the neural circuits in the hippocampus, PFC, and PPC that support schema development and new learning. The overall goal of this U-19 Program is to develop a comprehensive theory of the circuit mechanisms that support rapid learning. To achieve these goals, we will make use of a multi-laboratory research framework with an ambitious effort that requires multiple areas of expertise, exemplified by our team members. Our team effort is organized around four Research Projects, each supported by Data Science and Administrative Cores. Through parallel projects in monkeys and humans, we will perform large-scale recordings simultaneously across the hippocampus, PFC and PPC to assess modulations in cross-regional connectivity during schema development and new association and categorization learning. Complementary theoretical approaches will integrate large-scale circuit modeling of the human and nonhuman primate brain based on measured mesoscopic connectivity and training recurrent neural networks to perform cognitive tasks. We will test the hypothesis that in the course of schema instantiation, a task structure is encoded in the form of a low-dimensional structure in the space of connection weights, which is reflected in a low- dimensional subspace of neural dynamics. During new learning, the system benefits from the schema to narrow weight parameter search, thereby speeding up learning. We hypothesize that this process is observable at the level of dynamical inter-areal interactions. Taken together, the experiments proposed under this Program will provide a comprehensive, cross-species investigation of the neural mechanisms of rapid learning.
项目总结/摘要 哺乳动物的大脑具有非凡的储存和检索信息的能力。详细的记忆可以 这些记忆可以在一次曝光后形成,并且可以保留数十年。这种能力是 受损的结构位于内侧颞叶,包括海马 和邻近的皮层在过去的十年里,许多研究强调了 海马和新皮层,特别是前额叶皮层(PFC)和后顶叶皮层(PPC), 在记忆巩固中起着重要作用。然而,支持记忆的电路机制 巩固是不太清楚,特别是在灵长类动物的大脑。记忆力受损是一个重要的 阿尔茨海默病、颞叶癫痫、抑郁症和精神分裂症等疾病的组成部分 影响了两千万美国人我们的长期目标是为更好的 了解记忆过程背后的神经机制,以便使我们更接近 为这些残疾患者开发新的治疗方法。心理学理论和行为研究 提出,快速,单次试验积累的信息是促进先验知识,认知地图 或“心理图式”,它提供了一个框架,新的信息可以吸收。这个概念 相关的理解潜在的大脑皮层-新皮层的相互作用,在服务的记忆巩固。 这里提出的实验将直接检查海马体,PFC和PPC中的神经回路, 支持图式发展和新的学习。U-19计划的总体目标是开发一种 支持快速学习的电路机制的综合理论。为了实现这些目标,我们将 利用多实验室研究框架,进行雄心勃勃的努力,需要多个领域, 专业知识,以我们的团队成员为例。我们的团队工作围绕四个研究项目组织,每个项目 由数据科学和管理核心支持。通过在猴子和人类身上的平行项目,我们将 在海马体、PFC和PPC上同时进行大规模记录,以评估调制 在图式发展和新的关联和分类学习过程中的跨区域连接。 互补的理论方法将整合人类和非人类的大规模电路建模 基于测量的介观连通性和训练递归神经网络来执行 认知任务我们将检验这样一个假设,即在图式实例化的过程中,任务结构被编码 以连接权重空间中的低维结构的形式,这反映在低维结构中。 神经动力学的维子空间在新的学习过程中,系统受益于图式, 权重参数搜索,从而加快学习速度。我们假设这个过程是可以观察到的, 区域间动态互动水平。总的来说,根据本方案提出的实验将 提供一个全面的,跨物种的快速学习的神经机制的调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth A Buffalo其他文献

Elizabeth A Buffalo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth A Buffalo', 18)}}的其他基金

Training in theoretical and computational approaches to neural circuits of cognition
认知神经回路的理论和计算方法培训
  • 批准号:
    10626364
  • 财政年份:
    2023
  • 资助金额:
    $ 20.32万
  • 项目类别:
Tracking the emergence of internal models
追踪内部模型的出现
  • 批准号:
    10429372
  • 财政年份:
    2022
  • 资助金额:
    $ 20.32万
  • 项目类别:
Computational and Circuit Mechanisms Underlying Rapid Learning
快速学习背后的计算和电路机制
  • 批准号:
    10456064
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
  • 批准号:
    10205975
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10456070
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Computational and Circuit Mechanisms Underlying Rapid Learning
快速学习背后的计算和电路机制
  • 批准号:
    9983215
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
  • 批准号:
    9763655
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Cortical-hippocampal interactions underlying rapid learning in naturalistic environments
自然环境中快速学习的皮质-海马相互作用
  • 批准号:
    10456068
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
  • 批准号:
    10403685
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9983236
  • 财政年份:
    2018
  • 资助金额:
    $ 20.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了