Cortical-hippocampal interactions underlying rapid learning in naturalistic environments
自然环境中快速学习的皮质-海马相互作用
基本信息
- 批准号:10456068
- 负责人:
- 金额:$ 57.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAmericanAreaAssociation LearningBrainCategoriesCharacteristicsCodeCognitiveCommunicationComplexComputer ModelsCoupledData Science CoreData SetDecision MakingDevelopmentDisabled PersonsDiseaseEnvironmentEventFrequenciesFunctional Magnetic Resonance ImagingGoalsHippocampus (Brain)HumanIndividualKnowledgeLateralLearningMemoryMemory impairmentMental DepressionMonkeysNeocortexNeuronsOdorsOutcomeParietal LobePatientsPatternPerformancePrefrontal CortexPrimatesPsyche structurePsychological TheoryRetrievalRodentRoleSchizophreniaServicesSleepStructureSystemTask PerformancesTechniquesTemporal Lobe EpilepsyTestingTrainingWakefulnessbasebehavior testbehavioral studycomplex dataexperienceexperimental studymemory consolidationmemory processneocorticalneural circuitneuromechanismnovelnovel strategiesnovel therapeuticsrelating to nervous systemresponsetoolvirtual environmentvirtual reality environmentwireless
项目摘要
Project Summary/Abstract
The ability of the mammalian brain to store and later retrieve information is remarkable. Detailed, complex
memories can be formed after as little as one exposure, and those memories can be retained for decades.
This ability is compromised following damage to the hippocampus, and interaction between the hippocampus
and the neocortex is thought to be critical for systems memory consolidation. Impaired memory is a debilitating
consequence of diseases such as temporal lobe epilepsy, Alzheimer's disease, depression, and schizophrenia
that collectively affect over twenty-five million Americans. However, our understanding of the circuit
mechanisms that support memory consolidation and rapid new learning is incomplete, particularly in the
primate brain. Our long-range goal is to contribute to a better understanding of the neural mechanisms that
underlie memory processes to bring us closer to developing new therapies for these disabled patients.
Psychological theories and behavioral studies have suggested that rapid, single-trial accumulation of
information is facilitated by prior knowledge, a “mental schema” that provides a framework onto which new
information can be assimilated. The hippocampus is considered to be critical for extracting and representing
regularities that hold across learning episodes, and these regularities constitute the cognitive schema.
Determining how the hippocampus supports this cognitive framework will be critical to understanding the
hippocampal-neocortical interactions that are necessary for memory consolidation. The experiments proposed
here will directly examine hippocampal-cortical interactions during learning and consolidation. We propose to
utilize newly available technical developments to advance our understanding of the mechanism that support
rapid new learning. Specifically, we propose to perform large-scale recordings from individual neurons
throughout the hippocampus, parietal cortex, and prefrontal cortex in monkeys trained to perform a task of
object-place association in virtual environments. We will use stable and unstable environments to examine the
impact of a schema on association learning and neural activity, and we will track neural activity during learning
to investigate the mechanisms that support the formation of a schema. The proposed experiments have the
following potential outcomes: 1) to identify the network activity across single units in the hippocampus, parietal
and prefrontal cortex in support of object-place association learning, 2) to identify the dynamics of cross-
regional communication through synchronized oscillatory activity during schema development and rapid
learning, and 3) to identify hippocampal-cortical interaction during sleep and quiet wakefulness and determine
how this interaction impacts memory consolidation.
项目概要/摘要
哺乳动物大脑存储和随后检索信息的能力是非凡的。详细、复杂
只需一次接触就可以形成记忆,并且这些记忆可以保留数十年。
海马体受损以及海马体之间的相互作用后,这种能力就会受到损害
新皮质被认为对于系统记忆整合至关重要。记忆力减退是一种衰弱的表现
颞叶癫痫、阿尔茨海默病、抑郁症和精神分裂症等疾病的后果
共同影响超过两千五百万美国人。然而,我们对电路的理解
支持记忆巩固和快速新学习的机制还不完整,特别是在
灵长类动物的大脑。我们的长期目标是促进更好地理解神经机制
记忆过程的基础,使我们更接近为这些残疾患者开发新疗法。
心理学理论和行为研究表明,单次试验的快速积累
信息是由先验知识促进的,这是一种“心理模式”,它提供了一个框架,在此基础上新的知识
信息可以被同化。海马体被认为对于提取和表达至关重要
学习过程中存在的规律性,这些规律性构成了认知图式。
确定海马体如何支持这种认知框架对于理解
海马-新皮质相互作用是记忆巩固所必需的。提出的实验
这里将直接检查学习和巩固过程中海马皮质的相互作用。我们建议
利用新的技术发展来加深我们对支持机制的理解
快速的新学习。具体来说,我们建议对单个神经元进行大规模记录
受过训练执行以下任务的猴子的海马体、顶叶皮层和前额叶皮层
虚拟环境中的物体-地点关联。我们将使用稳定和不稳定的环境来检查
图式对关联学习和神经活动的影响,我们将在学习过程中跟踪神经活动
研究支持模式形成的机制。所提出的实验有
以下潜在结果:1)确定海马体、顶叶单个单位的网络活动
和前额皮质支持物体-地点关联学习,2)识别跨区域的动态
在图式发展和快速发展过程中通过同步振荡活动进行区域交流
学习,3) 识别睡眠和安静清醒期间海马-皮质相互作用,并确定
这种相互作用如何影响记忆巩固。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth A Buffalo其他文献
Elizabeth A Buffalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth A Buffalo', 18)}}的其他基金
Training in theoretical and computational approaches to neural circuits of cognition
认知神经回路的理论和计算方法培训
- 批准号:
10626364 - 财政年份:2023
- 资助金额:
$ 57.33万 - 项目类别:
Computational and Circuit Mechanisms Underlying Rapid Learning
快速学习背后的计算和电路机制
- 批准号:
10308341 - 财政年份:2020
- 资助金额:
$ 57.33万 - 项目类别:
Computational and Circuit Mechanisms Underlying Rapid Learning
快速学习背后的计算和电路机制
- 批准号:
10456064 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
- 批准号:
10205975 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别:
Computational and Circuit Mechanisms Underlying Rapid Learning
快速学习背后的计算和电路机制
- 批准号:
9983215 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
- 批准号:
9763655 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别:
Temporally coordinated activity in the primate hippocampus supporting memory formation
灵长类海马体的时间协调活动支持记忆形成
- 批准号:
10403685 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别: