EHR-Based Prediction Models to Improve PrEP Use in Community Health Centers

基于 EHR 的预测模型可改善社区卫生中心 PrEP 的使用

基本信息

项目摘要

PROJECT SUMMARY Rates of new HIV infections are disproportionately high, and uptake of preexposure prophylaxis (PrEP) low, in Black, Latino, and underinsured individuals in the U.S. Healthcare providers at safety net community health centers (CHCs) provide care to racially diverse populations with high rates of underinsurance. However, providers cite barriers to PrEP prescribing, including lack of tools to identify candidates for PrEP. Without practical tools to help providers identify patients at risk for HIV infection and prescribe PrEP when appropriate, the population-level benefits of PrEP are unlikely to be realized. Electronic clinical decision support using data embedded in patients’ electronic health records (EHRs) has the potential to fulfill this need. EHRs contain rich data that can help identify patients at high risk of HIV acquisition, including demographics, diagnoses, testing patterns, prescriptions, and social determinants of health. In our prior work, we developed and validated prediction models using EHR data from two large healthcare systems in Massachusetts and California, with patient populations of 1.1 and 4.3 million, to identify patients at high risk for incident HIV. These machine learning models had strong predictive performance, with C-statistics up to 0.91. The objective of this proposal is to test the hypothesis that a clinical decision support tool that incorporates an HIV risk prediction model can help providers identify patients at high risk for HIV infection and improve PrEP prescribing. Our study setting is a national network of CHCs with 2.8 million patients (OCHIN). We will first tailor our HIV prediction models to this clinic network, and then conduct formative work with providers to inform our development of alerts and additional PrEP decision support tools that will be effective and welcomed. The study team includes experts in HIV, PrEP implementation, predictive analytics, and healthcare delivery in CHCs. Our specific aims are to 1) optimize prediction models that use EHR data to identify potential PrEP candidates in racially, socioeconomically, and geographically diverse patient populations; 2) explore providers’ perspectives on barriers to PrEP prescribing, and their preferences for PrEP decision support, to inform development of an EHR-based decision support tool for CHCs; and 3) conduct a pilot trial to assess the feasibility, acceptability, and preliminary impact of an EHR-based clinical decision support intervention on PrEP-related care in CHCs. We will assess impact on metrics across the PrEP care continuum, including prescriptions, persistence, clinical monitoring, and tests and diagnoses of HIV and other sexually transmitted infections. This proposal is innovative in its use of predictive analytics and clinical decision support to optimize PrEP. The project is significant because our intervention will be scalable across CHCs nationally and to other healthcare systems with EHRs, and because it addresses the federal initiative to end the HIV epidemic by scaling up PrEP in high- incidence settings. The expected outcome is the foundation for a cluster randomized trial to test whether EHR- based decision support for PrEP can prevent new HIV infections in a national network of CHCs.
项目摘要 新的艾滋病毒感染率高得不成比例,暴露前预防(PrEP)的吸收率低, 美国的黑人、拉丁美洲人和保险不足的个人安全网社区卫生保健提供者 中心(CHC)为保险不足率高的种族多样化人群提供护理。然而,在这方面, 供应商列举了PrEP处方的障碍,包括缺乏识别PrEP候选人的工具。 实用的工具,以帮助提供者识别有感染艾滋病毒风险的患者,并在适当的时候开出PrEP, PrEP的人口水平效益不太可能实现。使用数据的电子临床决策支持 嵌入在患者电子健康记录(EHR)中的电子病历具有满足这一需求的潜力。EHR含有丰富的 有助于识别HIV感染高危患者的数据,包括人口统计学、诊断、检测 模式、处方和健康的社会决定因素。在我们之前的工作中,我们开发并验证了 预测模型使用来自马萨诸塞州和加州两个大型医疗保健系统的EHR数据, 110万和430万的患者人群,以确定艾滋病毒事件的高风险患者。这些机器 学习模型具有很强的预测性能,C统计量高达0.91。本提案的目的 是检验一个假设,即一个包含艾滋病毒风险预测模型的临床决策支持工具, 帮助提供者识别HIV感染高风险患者,并改善PrEP处方。我们的研究背景是 拥有280万患者的全国社区卫生中心网络(OCHIN)。我们将首先调整我们的艾滋病毒预测模型, 这个诊所网络,然后与提供者进行形成性工作,以告知我们警报的开发, 额外的PrEP决策支持工具将是有效的和受欢迎的。该研究小组包括专家, 艾滋病毒、PrEP实施、预测分析和社区卫生中心的医疗保健服务。我们的具体目标是:(1) 优化使用EHR数据的预测模型,以确定潜在的PrEP候选人在种族, 社会经济和地理上多样化的患者人群; 2)探索提供者对 PrEP处方的障碍,以及他们对PrEP决策支持的偏好,以告知制定 为社区健康中心提供以健康档案为本的决策支援工具;及3)进行试验计划,以评估 以及基于EHR的临床决策支持干预对CHCs中PrEP相关护理的初步影响。 我们将评估对整个PrEP护理连续体指标的影响,包括处方、持续性、临床 艾滋病毒和其他性传播感染的监测、检测和诊断。这项建议是 创新地使用预测分析和临床决策支持来优化PrEP。该项目 重要的是,我们的干预措施将在全国范围内的社区卫生中心和其他医疗保健系统中推广 与EHR,因为它解决了联邦倡议,以结束艾滋病毒流行的规模扩大PrEP在高- 发生率设置。预期的结果是一个集群随机试验的基础,以测试是否EHR- 基于PrEP的决策支持可以预防全国CHC网络中的新艾滋病毒感染。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HIV pre-exposure prophylaxis provision by U.S. health centers in 2021.
2021 年美国卫生中心提供 HIV 暴露前预防服务。
  • DOI:
    10.1097/qad.0000000000003774
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chinbunchorn,Tanat;Mayer,KennethH;Campbell,Juwan;King,Dana;Krakower,Douglas;Marcus,JuliaL;Grasso,Chris;Keuroghlian,AlexS
  • 通讯作者:
    Keuroghlian,AlexS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Scott Krakower其他文献

Douglas Scott Krakower的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Scott Krakower', 18)}}的其他基金

Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
  • 批准号:
    10699074
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Hybrid implementation-effectiveness study to optimize HIV testing and PrEP in a southern jail (HOTSPOT)
优化南部监狱 HIV 检测和 PrEP 的混合实施效果研究 (HOTSPOT)
  • 批准号:
    10402603
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
Hybrid implementation-effectiveness study to optimize HIV testing and PrEP in a southern jail (HOTSPOT)
优化南部监狱 HIV 检测和 PrEP 的混合实施效果研究 (HOTSPOT)
  • 批准号:
    10602502
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
EHR-Based Prediction Models to Improve PrEP Use in Community Health Centers
基于 EHR 的预测模型可改善社区卫生中心 PrEP 的使用
  • 批准号:
    9926611
  • 财政年份:
    2019
  • 资助金额:
    $ 23.33万
  • 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
  • 批准号:
    8723886
  • 财政年份:
    2012
  • 资助金额:
    $ 23.33万
  • 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
  • 批准号:
    8410236
  • 财政年份:
    2012
  • 资助金额:
    $ 23.33万
  • 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
  • 批准号:
    8547838
  • 财政年份:
    2012
  • 资助金额:
    $ 23.33万
  • 项目类别:

相似海外基金

I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Standard Grant
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了