EHR-Based Prediction Models to Improve PrEP Use in Community Health Centers
基于 EHR 的预测模型可改善社区卫生中心 PrEP 的使用
基本信息
- 批准号:9926611
- 负责人:
- 金额:$ 28.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-12 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAdvisory CommitteesAnatomyAnti-Retroviral AgentsAutomated Clinical Decision SupportCaliforniaCaringClinicClinicalClinical Decision Support SystemsClinical InformaticsCluster randomized trialCommunity Health NetworksContinuity of Patient CareCounselingDataDevelopmentDiagnosisEconomicsElectronic Health RecordEpidemicFinancial compensationFocus GroupsFoundationsFrequenciesGeographyGoalsGuidelinesHIVHIV InfectionsHIV diagnosisHIV riskHIV/STDHealth PersonnelHealth PrioritiesHealthcare SystemsHepatitis BHepatitis CIncidenceIndividualInfectionInsurance CoverageInterventionInterviewLatinoMachine LearningMassachusettsModelingMonitorNeighborhood Health CenterNotificationOutcomePatient CarePatientsPatternPerceptionPerformancePharmaceutical PreparationsPopulationPopulation HeterogeneityPovertyPredictive AnalyticsProphylactic treatmentProviderResearchRiskScienceSexually Transmitted DiseasesSocioeconomic StatusSubstance Use DisorderSuggestionTestingUnderinsuredUnderserved PopulationWorkanal pap smearbaseclinical decision supportdemographicsdesigndisparity reductionethnic minority populationexperiencehealth care deliveryhigh riskimprovedinnovationmemberpatient populationpilot trialpredictive modelingpreferencepreventracial and ethnicracial diversityrisk prediction modelroutine caresafety netscale upside effectsocial health determinantssocioeconomicsstatisticssupport toolstooltransmission processuptake
项目摘要
PROJECT SUMMARY
Rates of new HIV infections are disproportionately high, and uptake of preexposure prophylaxis (PrEP) low, in
Black, Latino, and underinsured individuals in the U.S. Healthcare providers at safety net community health
centers (CHCs) provide care to racially diverse populations with high rates of underinsurance. However,
providers cite barriers to PrEP prescribing, including lack of tools to identify candidates for PrEP. Without
practical tools to help providers identify patients at risk for HIV infection and prescribe PrEP when appropriate,
the population-level benefits of PrEP are unlikely to be realized. Electronic clinical decision support using data
embedded in patients’ electronic health records (EHRs) has the potential to fulfill this need. EHRs contain rich
data that can help identify patients at high risk of HIV acquisition, including demographics, diagnoses, testing
patterns, prescriptions, and social determinants of health. In our prior work, we developed and validated
prediction models using EHR data from two large healthcare systems in Massachusetts and California, with
patient populations of 1.1 and 4.3 million, to identify patients at high risk for incident HIV. These machine
learning models had strong predictive performance, with C-statistics up to 0.91. The objective of this proposal
is to test the hypothesis that a clinical decision support tool that incorporates an HIV risk prediction model can
help providers identify patients at high risk for HIV infection and improve PrEP prescribing. Our study setting is
a national network of CHCs with 2.8 million patients (OCHIN). We will first tailor our HIV prediction models to
this clinic network, and then conduct formative work with providers to inform our development of alerts and
additional PrEP decision support tools that will be effective and welcomed. The study team includes experts in
HIV, PrEP implementation, predictive analytics, and healthcare delivery in CHCs. Our specific aims are to 1)
optimize prediction models that use EHR data to identify potential PrEP candidates in racially,
socioeconomically, and geographically diverse patient populations; 2) explore providers’ perspectives on
barriers to PrEP prescribing, and their preferences for PrEP decision support, to inform development of an
EHR-based decision support tool for CHCs; and 3) conduct a pilot trial to assess the feasibility, acceptability,
and preliminary impact of an EHR-based clinical decision support intervention on PrEP-related care in CHCs.
We will assess impact on metrics across the PrEP care continuum, including prescriptions, persistence, clinical
monitoring, and tests and diagnoses of HIV and other sexually transmitted infections. This proposal is
innovative in its use of predictive analytics and clinical decision support to optimize PrEP. The project is
significant because our intervention will be scalable across CHCs nationally and to other healthcare systems
with EHRs, and because it addresses the federal initiative to end the HIV epidemic by scaling up PrEP in high-
incidence settings. The expected outcome is the foundation for a cluster randomized trial to test whether EHR-
based decision support for PrEP can prevent new HIV infections in a national network of CHCs.
项目总结
新的艾滋病毒感染率高得不成比例,暴露前预防(PrEP)的接受率很低,
美国黑人、拉丁裔和保险不足的个人-安全网社区健康的医疗保健提供者
中心(CHC)为种族多样化、保险覆盖率较高的人群提供护理。然而,
提供者列举了开PrEP处方的障碍,包括缺乏确定PrEP候选人的工具。如果没有
实用工具,帮助提供者识别有艾滋病毒感染风险的患者,并在适当时开出PrEP,
PrEP在人口层面的好处不太可能实现。基于数据的电子临床决策支持
嵌入患者电子健康记录(EHR)中的电子病历具有满足这一需求的潜力。EHR含有丰富的
可帮助识别感染艾滋病毒高危患者的数据,包括人口统计数据、诊断、检测
健康的模式、处方和社会决定因素。在我们之前的工作中,我们开发并验证了
使用来自马萨诸塞州和加利福尼亚州两个大型医疗保健系统的EHR数据的预测模型,
患者人数分别为110万和430万,以确定感染艾滋病毒的高危患者。这些机器
学习模型具有较强的预测性能,C-统计量高达0.91。这项提议的目的是
是为了测试这样一种假设,即结合艾滋病毒风险预测模型的临床决策支持工具可以
帮助提供者识别艾滋病毒感染的高危患者,并改进PrEP处方。我们的研究背景是
拥有280万患者的国家社区卫生中心网络(人道协调厅)。我们将首先调整我们的艾滋病毒预测模型,以
这个诊所网络,然后与提供商一起进行形成性工作,以告知我们警报和
额外的PrEP决策支持工具将是有效和受欢迎的。研究小组包括以下专家
HIV、PrEP实施、预测性分析和CHC中的医疗保健提供。我们的具体目标是1)
优化预测模型,使用EHR数据在种族上识别潜在的PrEP候选对象,
社会经济和地理上不同的患者群体;2)探索提供者对
PrEP处方的障碍,以及他们对PrEP决策支持的偏好,以帮助制定
和3)进行试点试验,以评估可行性、可接受性、
以及基于EHR的临床决策支持干预对CHC中PrEP相关护理的初步影响。
我们将评估对整个PrEP护理连续体系的指标的影响,包括处方、持久性、临床
监测、检测和诊断艾滋病毒和其他性传播感染。这项建议是
创新地使用预测分析和临床决策支持来优化PrEP。该项目是
意义重大,因为我们的干预将可在全国范围内的CHCs和其他医疗系统中扩展
与EHR,因为它解决了联邦倡议,通过扩大PrEP在高-
关联设置。预期结果是一项整群随机试验的基础,以测试EHR-
为预防预防接种计划提供基于决策的支持,可以预防全国预防控制和预防中心网络中新的艾滋病毒感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Scott Krakower其他文献
Douglas Scott Krakower的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Scott Krakower', 18)}}的其他基金
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Hybrid implementation-effectiveness study to optimize HIV testing and PrEP in a southern jail (HOTSPOT)
优化南部监狱 HIV 检测和 PrEP 的混合实施效果研究 (HOTSPOT)
- 批准号:
10402603 - 财政年份:2022
- 资助金额:
$ 28.03万 - 项目类别:
Hybrid implementation-effectiveness study to optimize HIV testing and PrEP in a southern jail (HOTSPOT)
优化南部监狱 HIV 检测和 PrEP 的混合实施效果研究 (HOTSPOT)
- 批准号:
10602502 - 财政年份:2022
- 资助金额:
$ 28.03万 - 项目类别:
EHR-Based Prediction Models to Improve PrEP Use in Community Health Centers
基于 EHR 的预测模型可改善社区卫生中心 PrEP 的使用
- 批准号:
10307992 - 财政年份:2019
- 资助金额:
$ 28.03万 - 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
- 批准号:
8723886 - 财政年份:2012
- 资助金额:
$ 28.03万 - 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
- 批准号:
8410236 - 财政年份:2012
- 资助金额:
$ 28.03万 - 项目类别:
Optimizing HIV Pre-Exposure Prophylaxis through Shared Decision Making
通过共同决策优化艾滋病毒暴露前预防
- 批准号:
8547838 - 财政年份:2012
- 资助金额:
$ 28.03万 - 项目类别:
相似海外基金
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 28.03万 - 项目类别:
Fellowship Programs