Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
基本信息
- 批准号:10314508
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAttentionCardiovascular DiseasesCaringClinicClinicalClinical DataCodeCommunicationCommunitiesDataData SourcesDevelopmentDiabetes MellitusDocumentationEducationEffectivenessElectronic Health RecordFinancial HardshipGoalsHealthHealth PersonnelHealth behaviorHealthcare SystemsIncomeInsurance CarriersInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)Machine LearningManualsMedicalMedical centerMethodologyMethodsMinorityMinority GroupsNatural Language ProcessingNatureNon-Insulin-Dependent Diabetes MellitusOutcomePatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPhenotypePhysiciansPrimary Health CareProcessProviderPublic Health InformaticsRecommendationReportingResearch PersonnelResourcesRiskRisk FactorsRoleServicesSocial WorkSocial isolationSouth CarolinaStandardizationStructureSystemTrustUnited States Department of Veterans AffairsUniversitiesVeteransVeterans Health AdministrationVisitbasecare outcomesclinically actionablecohortcommunity based servicedeep learningdisorder preventiondistrustethnic minority populationfood insecurityhealth care qualityhealth care service organizationhealth disparityhealth information technologyhealth managementimprovedimproved outcomeinnovationlearning strategymale healthmedically underserved populationminority healthnovelpatient populationpopulation healthprecision medicineracial and ethnicracial minorityroutine caresocialsocial determinantssocial factorssocial health determinantssocioeconomicstool
项目摘要
Background: There is increased attention on social determinants of health (SDOH) as a result of
empirical evidence showing that the patient’s social background is associated with their health
behaviors and clinical outcomes. Now more than ever, health care systems (HCS) are being held
accountable for addressing social factors. Improving the quality of health care among racial and ethnic
minorities is a VA is a top priority.
Significance/Impact: Ideally, identifying and documenting a patient’s social background would be
followed by referral to services that address the SDOH that are most likely to reduce compliance with
recommendations for disease prevention, treatment, and management. However, SDOH such as
education, income, social isolation, and financial strain are rarely documented during routine care visits.
A more systematic approach that leverages health information technology is needed to improve the
efficiency and effectiveness of identifying social determinants among patients in the VA so that more
targeted approaches are used to address these risk factors in the patients’ communities. A better
understanding of SDOH within the electronic health record (EHR) is needed in order to improve
population health management and processes for referring patients to social services.
Innovation: The first step to developing a more robust data-driven strategy for identifying social
phenotypes among patients is to understand the extent to which SDOHs are being documented in the
EHR. Natural language processing (NLP) is one strategy to automatically extract those data from
clinical notes in the EHR into a structured format that can be used to examine the quality of health care
and facilitate the development and implementation of quality improvement strategies. However, NLP
approaches alone are not sufficient to improve the quality of health care for Veteran racial/ethnic
minorities. This is because poor quality communication between patients and providers and greater
distrust in the health care system among minorities may limit discussion of these factors. Novel deep
learning approaches have not been fully leveraged in the identification of patients at risk for adverse
SDOH. Moreover, there is a lack of empirical data on the concordance between patient self-reported
SDOH and those extracted using NLP. Even less is known about the value associated with obtaining
and documenting SDOH on patient outcomes. Therefore, we propose to develop a multilevel health
informatics approach for identifying social phenotypes among primary care patients based on
documentation of SDOH in the EHR as part of the following:
Specific Aims: Aim 1: Use deep learning strategies to identify social phenotypes among diabetes
patients based on documentation of SDOH in the EHR. Aim 2: Examine the concordance between risk
factors for SDOH identified using NLP and patient-self- report. Aim 3: Conduct a study to evaluate the
effects of documenting SDOH on patient outcomes.
Methodology: A deep learning NLP approach will be used to characterize the rates at which SDOH are
documented in the EHR. Machine learning strategies will be used to identify social phenotypes based
on SDOH.
Implementation/Next Steps: We predict that Veterans who have SDOH documented in the EHR will
report better clinical outcomes, greater trust in health care providers, and better patient-physician
communication compared to Veterans who do not have SDOH documented in their EHR. We will also
characterize referrals to clinic- and community-based services based on the patient’s social phenotype.
背景:由于以下原因,人们越来越关注健康的社会决定因素(SDOH):
经验证据表明患者的社会背景与其健康状况相关
行为和临床结果。现在,医疗保健系统 (HCS) 比以往任何时候都更加受到关注
负责解决社会因素。提高种族和民族的医疗保健质量
少数民族是 VA 的首要任务。
意义/影响:理想情况下,识别和记录患者的社会背景将是
其次是转介解决 SDOH 的服务,这些服务最有可能减少对 SDOH 的遵守
疾病预防、治疗和管理的建议。然而,SDOH 例如
在日常护理就诊期间很少记录教育、收入、社会孤立和经济压力。
需要一种利用卫生信息技术的更系统的方法来改善
确定 VA 患者社会决定因素的效率和效果,以便更多
采用有针对性的方法来解决患者社区中的这些风险因素。更好的
需要了解电子健康记录 (EHR) 中的 SDOH,以便改进
人口健康管理和将患者转介至社会服务的流程。
创新:开发更强大的数据驱动策略来识别社交媒体的第一步
患者表型的目的是了解 SDOH 在多大程度上被记录在
电子病历。自然语言处理 (NLP) 是一种自动从数据中提取数据的策略
将 EHR 中的临床记录转换为结构化格式,可用于检查医疗保健质量
促进质量改进战略的制定和实施。然而,自然语言处理
仅靠方法不足以提高退伍军人种族/族裔的医疗保健质量
少数民族。这是因为患者和提供者之间的沟通质量较差,而且更多
少数群体对医疗保健系统的不信任可能会限制对这些因素的讨论。小说深奥
学习方法尚未充分利用来识别有不良风险的患者
SDOH。此外,缺乏关于患者自我报告之间一致性的经验数据
SDOH 和使用 NLP 提取的那些。对于与获得相关的价值知之甚少
记录 SDOH 对患者治疗结果的影响。因此,我们建议建立多层次的健康体系。
基于信息学方法来识别初级保健患者的社会表型
EHR 中 SDOH 的记录作为以下内容的一部分:
具体目标: 目标 1:使用深度学习策略识别糖尿病患者的社会表型
基于 EHR 中 SDOH 记录的患者。目标 2:检查风险之间的一致性
使用 NLP 和患者自我报告确定 SDOH 的因素。目标 3:进行研究以评估
记录 SDOH 对患者结果的影响。
方法:将使用深度学习 NLP 方法来描述 SDOH 的发生率
记录在电子病历中。机器学习策略将用于识别基于社会表型
关于SDOH。
实施/后续步骤:我们预测在 EHR 中记录了 SDOH 的退伍军人将
报告更好的临床结果、对医疗保健提供者更大的信任以及更好的患者医生
与 EHR 中没有记录 SDOH 的退伍军人相比,他们的沟通更加顺畅。我们还将
根据患者的社会表型来描述转诊至诊所和社区服务的特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis James Frey其他文献
Lewis James Frey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis James Frey', 18)}}的其他基金
Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
- 批准号:
10491762 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Developing Models to Identify Veterans with Nonalcoholic Fatty Liver Disease and Predict Progression
开发模型来识别患有非酒精性脂肪肝的退伍军人并预测病情进展
- 批准号:
10177897 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictio
整合不同数据的技术:临床个性化实用预测
- 批准号:
8599828 - 财政年份:2013
- 资助金额:
-- - 项目类别:
BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
- 批准号:
8914880 - 财政年份:2013
- 资助金额:
-- - 项目类别:
BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
- 批准号:
8840825 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




