Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
基本信息
- 批准号:10314508
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAttentionCardiovascular DiseasesCaringClinicClinicalClinical DataCodeCommunicationCommunitiesDataData SourcesDevelopmentDiabetes MellitusDocumentationEducationEffectivenessElectronic Health RecordFinancial HardshipGoalsHealthHealth PersonnelHealth behaviorHealthcare SystemsIncomeInsurance CarriersInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)Machine LearningManualsMedicalMedical centerMethodologyMethodsMinorityMinority GroupsNatural Language ProcessingNatureNon-Insulin-Dependent Diabetes MellitusOutcomePatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPhenotypePhysiciansPrimary Health CareProcessProviderPublic Health InformaticsRecommendationReportingResearch PersonnelResourcesRiskRisk FactorsRoleServicesSocial WorkSocial isolationSouth CarolinaStandardizationStructureSystemTrustUnited States Department of Veterans AffairsUniversitiesVeteransVeterans Health AdministrationVisitbasecare outcomesclinically actionablecohortcommunity based servicedeep learningdisorder preventiondistrustethnic minority populationfood insecurityhealth care qualityhealth care service organizationhealth disparityhealth information technologyhealth managementimprovedimproved outcomeinnovationlearning strategymale healthmedically underserved populationminority healthnovelpatient populationpopulation healthprecision medicineracial and ethnicracial minorityroutine caresocialsocial determinantssocial factorssocial health determinantssocioeconomicstool
项目摘要
Background: There is increased attention on social determinants of health (SDOH) as a result of
empirical evidence showing that the patient’s social background is associated with their health
behaviors and clinical outcomes. Now more than ever, health care systems (HCS) are being held
accountable for addressing social factors. Improving the quality of health care among racial and ethnic
minorities is a VA is a top priority.
Significance/Impact: Ideally, identifying and documenting a patient’s social background would be
followed by referral to services that address the SDOH that are most likely to reduce compliance with
recommendations for disease prevention, treatment, and management. However, SDOH such as
education, income, social isolation, and financial strain are rarely documented during routine care visits.
A more systematic approach that leverages health information technology is needed to improve the
efficiency and effectiveness of identifying social determinants among patients in the VA so that more
targeted approaches are used to address these risk factors in the patients’ communities. A better
understanding of SDOH within the electronic health record (EHR) is needed in order to improve
population health management and processes for referring patients to social services.
Innovation: The first step to developing a more robust data-driven strategy for identifying social
phenotypes among patients is to understand the extent to which SDOHs are being documented in the
EHR. Natural language processing (NLP) is one strategy to automatically extract those data from
clinical notes in the EHR into a structured format that can be used to examine the quality of health care
and facilitate the development and implementation of quality improvement strategies. However, NLP
approaches alone are not sufficient to improve the quality of health care for Veteran racial/ethnic
minorities. This is because poor quality communication between patients and providers and greater
distrust in the health care system among minorities may limit discussion of these factors. Novel deep
learning approaches have not been fully leveraged in the identification of patients at risk for adverse
SDOH. Moreover, there is a lack of empirical data on the concordance between patient self-reported
SDOH and those extracted using NLP. Even less is known about the value associated with obtaining
and documenting SDOH on patient outcomes. Therefore, we propose to develop a multilevel health
informatics approach for identifying social phenotypes among primary care patients based on
documentation of SDOH in the EHR as part of the following:
Specific Aims: Aim 1: Use deep learning strategies to identify social phenotypes among diabetes
patients based on documentation of SDOH in the EHR. Aim 2: Examine the concordance between risk
factors for SDOH identified using NLP and patient-self- report. Aim 3: Conduct a study to evaluate the
effects of documenting SDOH on patient outcomes.
Methodology: A deep learning NLP approach will be used to characterize the rates at which SDOH are
documented in the EHR. Machine learning strategies will be used to identify social phenotypes based
on SDOH.
Implementation/Next Steps: We predict that Veterans who have SDOH documented in the EHR will
report better clinical outcomes, greater trust in health care providers, and better patient-physician
communication compared to Veterans who do not have SDOH documented in their EHR. We will also
characterize referrals to clinic- and community-based services based on the patient’s social phenotype.
背景:由于社会决定者(SDOH)的关注越来越高
经验证据表明患者的社会背景与他们的健康有关
行为和临床结果。现在,卫生保健系统(HCS)比以往任何时候都多
负责解决社会因素。提高种族和族裔医疗保健的质量
少数民族是VA是当务之急。
意义/影响:理想情况下,确定和记录患者的社会背景将是
然后转介到解决SDOH的服务,最有可能降低遵守
预防疾病,治疗和管理建议。但是,SDOH例如
在常规护理访问中很少有教育,收入,社会隔离和财务压力。
需要一种更系统的方法来利用健康信息技术来改善
识别VA患者中社会决定者的有效性和有效性,以便更多
有针对性的方法用于解决患者社区中的这些危险因素。更好
需要了解电子健康记录(EHR)内的SDOH才能改善
人口健康管理和将患者推荐给社会服务的过程。
创新:制定更强大的数据驱动策略来识别社会的第一步
患者中的表型是要了解SDOHS在多大程度上记录了
EHR。自然语言处理(NLP)是一种自动从中提取这些数据的策略
EHR中的临床注释为结构化格式,可用于检查医疗保健质量
并促进质量改进策略的制定和实施。但是,NLP
仅方法就不足以提高资深种族/种族的医疗保健质量
少数民族。这是因为患者和提供者之间的质量差异不佳以及更大的
少数民族中医疗保健系统的不信任可能会限制对这些因素的讨论。小说深
学习方法尚未完全利用在识别有广告风险的患者
SDOH。此外,缺乏关于患者自我报告的一致性的经验数据
SDOH和那些使用NLP提取的人。关于获得的价值,更少知道
并记录有关患者结果的SDOH。因此,我们建议发展多层次健康
提供基于初级保健患者中社会表型的信息方法
EHR中SDOH的文档作为以下一部分:
具体目的:目标1:使用深度学习策略来识别糖尿病中的社会表型
基于EHR中SDOH的文档的患者。目标2:检查风险之间的一致性
使用NLP和患者自我报告确定的SDOH因素。目标3:进行研究以评估
记录SDOH对患者预后的影响。
方法论:将使用深度学习的NLP方法来表征SDOH的速率
在EHR中记录。机器学习策略将用于识别基于社会表型
在SDOH上。
实施/下一步:我们预测已记录在EHR中的SDOH的退伍军人将
报告更好的临床结果,对医疗保健提供者的信任以及更好的患者医生
与没有SDOH在EHR中没有记录的SDOH的退伍军人相比。我们也会
根据患者的社会表型来表征转介到诊所和社区服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis James Frey其他文献
Lewis James Frey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis James Frey', 18)}}的其他基金
Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
- 批准号:
10491762 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Developing Models to Identify Veterans with Nonalcoholic Fatty Liver Disease and Predict Progression
开发模型来识别患有非酒精性脂肪肝的退伍军人并预测病情进展
- 批准号:
10177897 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictio
整合不同数据的技术:临床个性化实用预测
- 批准号:
8599828 - 财政年份:2013
- 资助金额:
-- - 项目类别:
BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
- 批准号:
8914880 - 财政年份:2013
- 资助金额:
-- - 项目类别:
BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
- 批准号:
8840825 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似国自然基金
基于自适应分级多层图注意力机制的疾病关联微生物预测模型及算法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于自适应分级多层图注意力机制的疾病关联微生物预测模型及算法研究
- 批准号:62272064
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
注意力引导的复杂场景精确室内定位关键算法研究
- 批准号:62102459
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
注意力引导的复杂场景精确室内定位关键算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向电力系统安全评估的深度稀疏图注意力卷积集成模型和增量学习算法研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of a Novel Virtual Reality Treatment for Emerging Adults with ADHD
开发一种针对患有多动症的新兴成人的新型虚拟现实治疗方法
- 批准号:
10721084 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
-- - 项目类别: