BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
基本信息
- 批准号:8840825
- 负责人:
- 金额:$ 52.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdverse effectsAlgorithmsBedsBenchmarkingBig DataBiologicalBiological ModelsBiosensing TechniquesBudgetsCaringCatalogingCatalogsCenters for Disease Control and Prevention (U.S.)ChildChild health careChildhoodClassificationClinic VisitsClinicalClinical DataClinical TrialsCluster AnalysisCollaborationsComplexComputer SystemsComputerized Medical RecordCoupledCritical CareDataData AnalysesData ElementData SetDatabasesDevelopmentDisastersDiseaseEnvironmentEpidemiologyEventExclusionExtensible Markup LanguageFundingGene ExpressionGenesGeneticGenomeGenomicsGerm-Line MutationGoalsHealthHealth systemHuman DevelopmentHuman GenomeImageryInformaticsInformation SystemsInstitutesInstructionInsulin-Dependent Diabetes MellitusInternetLanguageLettersLocationLogical Observation Identifiers Names and CodesMachine LearningMalignant NeoplasmsMeasuresMedicalMedical RecordsMedicineMetadataMethodologyMethodsModelingMutationNamesNatural Language ProcessingNon-Insulin-Dependent Diabetes MellitusOncogenesOntologyOutcomePatient CarePatientsPatternPerformancePlayPrivacyProcessPublic Health InformaticsRecordsRelative (related person)ReportingResearchResearch InfrastructureResearch PersonnelResearch Project GrantsResearch SupportResourcesRoleSequence AlignmentSomatic MutationSourceSpecialistStreamStructureSystemTechniquesTechnologyTerminologyTestingTextTimeTranslational ResearchTriageUnited States National Library of MedicineVariantVeteransVisualization softwareVocabularyWireless TechnologyWorkbasebench to bedsidecancer typeclinical careclinical practicecohortdata integrationdata miningdata visualizationdesignemergency service responderexperiencegenetic variantgenome analysisgenome sequencingimprovedindexinginteroperabilitymedical information systemnovelopen sourceparallel processingperformance testsprocessing speedrepositoryresearch studyresponsesugarsystem architecturetooltreatment responsetumortumor progressionvirtual
项目摘要
DESCRIPTION (provided by applicant): An unsolved problem in health informatics is how to apply the past experiences of patients, stored in large-scale medical records systems, to predict the outcomes of patients and to individualize care. One approach to prediction, heretofore impractical, is rapidly finding a patient cohort "similar enough" to an index case that the health experiences and outcomes of this cohort are informative for prediction. This task is formidable because of large variability of the vast numbers of patient attributes with the added complexity of sequences of patient encounters evolving over time. Epidemiological considerations such as confounding by indication for treatment also come into play. The objective of this research effort is to (1) create a modular test bed that uses a "big data" systems architecture to support research in rapid individualized prediction of outcomes from large clinical repositories and (2) to
explore various approaches to making "pragmatic" near-term predictions of outcomes. Using the Department of Veterans Affairs' (VA) Informatics and Computing Infrastructure database (VINCI), a research database with records of tens of millions of patients, we will explore two synergistic strategies for rapidly finding a cohort of patients that are similar enough to an index
patient to predict near-term treatment response and/or adverse effects in an elastic cloud environment: 1) use of temporal alignment of critical events including use of gene sequence alignment methods to relax requirements for exact temporal matching; and, 2) use of conceptual distance metrics to model the degree of content similarity of case records. The initial domain of application will be treatment of Type 2 diabetes. The approach will apply open source "big data" methodologies, including Hadoop and Accumulo, to store and filter "medical log" files. The content of these "logs" will be processed by a combination with strategies including conceptual markup of events using natural language processing tools, matching of event streams, and statistical data mining methods to rapidly retrieve and identify patients that are sufficiently similar to an index case to be able to make personalized yet pragmatic clinical predictions of outcomes. RELEVANCE (See instructions): This proposal studies how to use experience of past patients, stored in electronic medical records systems, to help clinicians make practical decisions on the care of complex patients with type 1 diabetes. Research applies methods adapted from Internet search engines and from studies of the human genome to determine what it means for one patient's disease experiences to be similar to and relevant to another's.
描述(由申请人提供):健康信息学中的一个未解决的问题是如何应用存储在大规模医疗记录系统中的患者过去的经验来预测患者的结果并进行个性化护理。迄今为止不切实际的一种预测方法是快速找到与索引病例“足够相似”的患者队列,使得该队列的健康经历和结果对于预测是有用的。这项任务是艰巨的,因为大量的患者属性的大的可变性,随着时间的推移,患者遇到的序列的复杂性增加。流行病学方面的考虑因素,如治疗适应症的混淆也起作用。这项研究工作的目标是(1)创建一个模块化测试床,该测试床使用“大数据”系统架构,以支持对大型临床资料库的结果进行快速个性化预测的研究,以及(2)
探索各种方法来对结果进行“务实”的近期预测。使用退伍军人事务部(VA)的信息学和计算基础设施数据库(芬奇),一个拥有数千万患者记录的研究数据库,我们将探索两种协同策略,用于快速找到与索引足够相似的患者队列
患者预测近期治疗反应和/或弹性云环境中的不良反应:1)使用关键事件的时间比对,包括使用基因序列比对方法来放松对精确时间匹配的要求;以及2)使用概念距离度量来对病例记录的内容相似度进行建模。最初的应用领域将是2型糖尿病的治疗。该方法将应用开源“大数据”方法,包括Hadoop和Accumulo,以存储和过滤“医疗日志”文件。这些“日志”的内容将通过与包括使用自然语言处理工具的事件的概念标记、事件流的匹配和统计数据挖掘方法的策略相结合来处理,以快速检索和识别与索引病例足够相似的患者,从而能够对结果进行个性化但实用的临床预测。相关性(参见说明):该提案研究如何使用存储在电子病历系统中的过去患者的经验,以帮助临床医生对1型糖尿病复杂患者的护理做出实际决策。研究采用了从互联网搜索引擎和人类基因组研究中改编的方法,以确定一个病人的疾病经历与另一个病人的疾病经历相似和相关意味着什么。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis James Frey其他文献
Lewis James Frey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis James Frey', 18)}}的其他基金
Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
- 批准号:
10314508 - 财政年份:2021
- 资助金额:
$ 52.95万 - 项目类别:
Data-Driven Methods to Identify Social Determinants of Health
识别健康社会决定因素的数据驱动方法
- 批准号:
10491762 - 财政年份:2021
- 资助金额:
$ 52.95万 - 项目类别:
Developing Models to Identify Veterans with Nonalcoholic Fatty Liver Disease and Predict Progression
开发模型来识别患有非酒精性脂肪肝的退伍军人并预测病情进展
- 批准号:
10177897 - 财政年份:2019
- 资助金额:
$ 52.95万 - 项目类别:
Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictio
整合不同数据的技术:临床个性化实用预测
- 批准号:
8599828 - 财政年份:2013
- 资助金额:
$ 52.95万 - 项目类别:
BIGDATA: Mid-Scale: DA: Techniques to Integrate Disparate Data: Clinical Personalized Pragmatic Predictions of Outcomes (C3PO)
BIGDATA:中等规模:DA:整合不同数据的技术:临床个性化实用结果预测 (C3PO)
- 批准号:
8914880 - 财政年份:2013
- 资助金额:
$ 52.95万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant














{{item.name}}会员




