Feeding Machine Learning Algorithms with Mechanistic Data to Predict Outcomes of Copper-Catalyzed Couplings
将机械数据输入机器学习算法来预测铜催化耦合的结果
基本信息
- 批准号:10314079
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffinityAirAreaBindingBromidesCatalysisChloridesCommunitiesComplexCopperCouplingDataData SetDevelopmentDisadvantagedEquationFosteringFoundationsGenerationsHandHigh temperature of physical objectInformaticsInvestigationIodidesLigandsMachine LearningMediatingMethodsModelingNitrogenOrganic ChemistryOxygenPalladiumPhosphinesPricePublicationsReactionResearchRestSaltsSeriesStructureSystemTemperatureTestingTimeTrainingTransition ElementsValidationWorkaryl halidecatalystchemical reactioncostdesignfeedingimprovedin silicoinsightlarge datasetsmachine learning algorithmoutcome predictionpredictive modelingreaction ratetool
项目摘要
PROJECT SUMMARY
Cross-coupling reactions that combine aryl halides with oxygen and nitrogen nucleophiles to form C-N and C-O
bonds are vital tools for the synthesis of medicinally-relevant molecules. These reactions are often catalyzed by
complexes of transition metals, such as palladium or copper. Copper-catalyzed cross-coupling reactions have
several advantages over their palladium-mediated counterparts, but the disadvantages associated with copper
catalysis often outweigh these benefits. Most Cu-catalyzed cross-coupling methods require high loadings of
catalyst and high temperatures, and copper catalysts are often unable to effect cross-coupling of aryl chlorides.
To address these issues, ligands that increase activity of copper catalysts for C-N and C-O cross-couplings have
been sought, and oxalamide ligands have been shown to generate some of the most active catalysts. A series
of publications by Ma have shown that such catalysts can, in some cases, react with 10,000 turnovers, and can
cross-couple aryl chlorides, albeit at high temperature (120 °C) and loading of catalyst (5-10 mol %). However,
identifying reaction conditions to promote cross-coupling of a given pair of substrates can be difficult – 12 different
oxalamide ligands have been used to achieve couplings of different combinations of substrates in high yield.
Herein, we propose to use mechanistic research, together with machine learning (ML), to facilitate the
identification of reaction conditions for C-O cross-coupling reactions mediated by Cu salts with oxalamide ligands
and to facilitate the development of improved ligands and methods. We hypothesize that mechanistic
understanding can be used to build improved ML models that can use data sets on the order of 100-1000 points
to predict reaction yield effectively. Once built, an ML model capable of predicting yield can be used to evaluate
in-silico the potential of a ligand to generate a catalyst for the cross-coupling of aryl chlorides, or to predict
reaction conditions to achieve high yield for a new combination of coupling partners.
Our research strategy is as follows. First, we will elucidate the mechanism of C-O cross-coupling reactions
catalyzed by copper salts with oxalamide ligands, and determine how ligand structure influences the reaction
mechanism. The mechanistic insights gained will be used to identify or develop input for a machine learning
model (features). We will use high-throughput experimentation tools to carry out 960 C-O coupling reactions with
a variety of aryl halides, nucleophiles, and oxalamide ligands. The data set will be used to compare our hand-
selected features with features selected by a ML algorithm by their ability to predict C-O coupling yield. The
comparison will be made across three different ML optimization tasks. Our mechanistic studies will establish for
the first time the mechanism of a C-O cross-coupling reaction catalyzed by Cu salts with oxalamide ligands,
laying the foundation for the investigation of other C-O and C-N cross-coupling reactions using the same catalyst
system. Our ML studies will establish methods that enable reasonably small datasets to predict reaction yield.
项目概要
芳基卤化物与氧和氮亲核试剂结合形成 C-N 和 C-O 的交叉偶联反应
键是合成医学相关分子的重要工具。这些反应通常由以下物质催化
过渡金属的络合物,例如钯或铜。铜催化的交叉偶联反应
与钯介导的同类产品相比有几个优点,但与铜相关的缺点
催化作用往往超过这些好处。大多数铜催化的交叉偶联方法需要高负载量
催化剂和高温,铜催化剂通常不能实现芳基氯的交叉偶联。
为了解决这些问题,增加铜催化剂 C-N 和 C-O 交叉偶联活性的配体已被开发出来。
人们一直在寻找,草酰胺配体已被证明可以产生一些最活跃的催化剂。 A系列
马云的出版物表明,在某些情况下,此类催化剂可以与 10,000 次翻转发生反应,并且可以
尽管在高温(120°C)和催化剂负载(5-10 mol%)下,芳基氯会交叉偶联。然而,
确定促进给定底物对交叉偶联的反应条件可能很困难 – 12 种不同的反应条件
草酰胺配体已被用来以高产率实现不同底物组合的偶联。
在此,我们建议使用机械研究和机器学习(ML)来促进
铜盐与草酰胺配体介导的 C-O 交叉偶联反应的反应条件的鉴定
并促进改进配体和方法的开发。我们假设机械
理解可用于构建改进的 ML 模型,该模型可以使用 100-1000 点数量级的数据集
有效预测反应产率。构建后,能够预测产量的 ML 模型可用于评估
计算机模拟配体产生芳基氯交叉偶联催化剂的潜力,或预测
反应条件以实现新的偶联伙伴组合的高产率。
我们的研究策略如下。首先,我们阐明C-O交叉偶联反应的机理
由铜盐与草酰胺配体催化,并确定配体结构如何影响反应
机制。获得的机械见解将用于识别或开发机器学习的输入
模型(特征)。我们将使用高通量实验工具进行960 C-O偶联反应
各种芳基卤化物、亲核试剂和草酰胺配体。该数据集将用于比较我们的手
机器学习算法通过预测 C-O 耦合率的能力来选择特征。这
将针对三种不同的 ML 优化任务进行比较。我们的机制研究将建立
首次揭示了铜盐与草酰胺配体催化的C-O交叉偶联反应的机理,
为使用同一催化剂研究其他C-O和C-N交叉偶联反应奠定基础
系统。我们的机器学习研究将建立能够使用相当小的数据集来预测反应产量的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Delaney其他文献
Connor Delaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.6万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant














{{item.name}}会员




