Understanding the regulatory mechanisms for Replication Termination Factor 2 (RTF2) removal and function during DNA replication
了解 DNA 复制过程中复制终止因子 2 (RTF2) 去除和功能的调节机制
基本信息
- 批准号:10315162
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2023-09-15
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAcuteAddressAutomobile DrivingBindingBypassCRISPR libraryCell DeathCellsChIP-seqChromatinCoupledDNADNA DamageDNA biosynthesisDNA replication forkDataDefectEnvironmentEuchromatinEventExcisionFutureGenetic MaterialsGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHistonesHumanKnowledgeLaboratoriesLeadLearningLesionLigaseLocationLysineMaintenanceMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMutateOutcomePathway interactionsPositioning AttributePost-Translational Protein ProcessingPrevention therapyProcessProteinsRecoveryRegulationRoleSeriesSiteSourceSystemUbiquitinUbiquitinationWorkbasebiological adaptation to stresscancer preventionchromatin immunoprecipitationdesignexperimental studygenomic locushistone modificationmulticatalytic endopeptidase complexnext generation sequencingnovelpreventreplication stressresponsetermination factorubiquitin ligaseubiquitin-protein ligase
项目摘要
Project Summary/ Abstract
DNA replication is a highly regulated process that occurs in the physical arena of chromatin. The DNA
replication machinery organizing this process, the replisome, confronts many obstacles, both endogenous and
exogenous, that threaten the accurate and efficient duplication of the genome. Cells have multiple mechanisms
to respond to these challenges and bypass lesions. Still, DNA replication stress has emerged as a potent source
of endogenous damage driving genome instability and cancer. Our laboratory has identified a novel replication
stress response axis in which the proteasome shuttle proteins DNA Damage Inducible 1 (DDI1) and DNA
Damage Inducible 2 (DDI2), function to remove Replication Termination Factor 2 (RTF2) from stalled forks to
mediate a proper recovery. Conversely, depletion of DDI1/2 results in retention of RTF2 in the replisome which
causes a replication fork restart defect that leads to severe genomic instability and cell death. The observed cell
death upon DDI1/2 depletion can be rescued by reducing levels of RTF2 at the replication fork. Overall, our
laboratory has therefore shown that the replisome is reorganized during the replication stress response by the
regulated removal of an essential replisome component.
In this study, we will elucidate the mechanism by which RTF2 is removed from the replication fork and
determine where RTF2 functions are required in the genome to maintain genome stability. Given that RTF2 is
removed by a proteosome shuttle protein, we hypothesize that the removal of RTF2 requires the ubiquitin
proteasome system. Both ubiquitin conjugation to RTF2 and degradation of the ubiquitin tagged RTF2 must be
tightly regulated and efficient. We have already shown that DDI1/2 regulates the actual removal, but the
mechanism of recognition of RTF2 by DDI1/2 needs to be understood. We propose that DDI1/2 interacts with a
ubiquitin-conjugation on RTF2 to target its degradation and aim to identify (1) the specific residue(s) on RTF2
that must be ubiquitinated for recognition by DDI1/2 and (2) the targeting E3 ligase that ubiquitinates RTF2.
Furthermore, we strive to understand the locations throughout the genome that require the prompt removal of
RTF2 and define the chromatin niche wherein RTF2 functions. Chromatin is an ordered, yet dynamic regulatory
platform composed of DNA and histone proteins and functionally distinct chromatin environments are created,
in part, through reversible covalent post-translational modifications (PTMs) of histones. Our goal is to determine
the genomic locations and chromatin environment that require RTF2 function and identify genomic loci that
require RTF2 removal. With this project, we are studying the fundamental events that coordinate regulation
between the ubiquitin proteosome system (UPS), chromatin, and the replisome at active and stalled replication
forks to promote genome stability.
项目总结/摘要
DNA复制是发生在染色质物理竞技场中的高度调节的过程。的DNA
组织这一过程的复制机器,即复制体,面临许多障碍,既有内源性的,
外源的,这威胁到基因组的准确和有效的复制。细胞有多种机制
来应对这些挑战和旁路病变。尽管如此,DNA复制压力已经成为一个强有力的来源,
导致基因组不稳定和癌症的内源性损伤。我们的实验室发现了一种新的复制方法
应激反应轴,其中蛋白酶体穿梭蛋白DNA损伤诱导1(DDI 1)和DNA
损伤诱导因子2(DDI 2),其功能是从停滞的分叉中去除复制终止因子2(RTF 2),
让他恢复正常相反,DDI 1/2的缺失导致RTF 2保留在复制体中,
导致复制叉重新启动缺陷,导致严重的基因组不稳定和细胞死亡。所述观察细胞
DDI 1/2耗尽时的死亡可以通过降低复制叉处的RTF 2水平来挽救。总体而言,我们
因此,实验室已经表明,在复制应激反应期间,复制体被重组。
调节必需复制体组分的去除。
在这项研究中,我们将阐明RTF 2从复制叉中移除的机制,
确定RTF 2功能在基因组中需要维持基因组稳定性的位置。如果RTF 2是
通过蛋白体穿梭蛋白去除,我们假设RTF 2的去除需要泛素
蛋白酶体系统泛素与RTF 2的缀合和泛素标记的RTF 2的降解两者必须是必需的。
严格监管和高效。我们已经表明,DDI 1/2调节实际的去除,但
需要了解DDI 1/2识别RTF 2的机制。我们认为DDI 1/2与一个
在RTF 2上进行泛素缀合以靶向其降解,并旨在鉴定(1)RTF 2上的特异性残基
必须被泛素化才能被DDI 1/2识别;(2)靶向E3连接酶,其泛素化RTF 2。
此外,我们努力了解整个基因组中需要迅速去除的位置。
RTF 2和定义染色质生态位,其中RTF 2的功能。染色质是一个有序的,但动态的调节
创建由DNA和组蛋白组成的平台和功能不同的染色质环境,
部分通过组蛋白的可逆共价翻译后修饰(PTM)。我们的目标是确定
需要RTF 2功能的基因组位置和染色质环境,并鉴定
需要移除RTF 2。通过这个项目,我们正在研究协调调节的基本事件
泛素蛋白体系统(UPS),染色质和复制体在活跃和停滞复制之间的关系
分叉以促进基因组稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Penelope Lee Ruiz其他文献
Penelope Lee Ruiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Penelope Lee Ruiz', 18)}}的其他基金
Understanding the regulatory mechanisms for Replication Termination Factor 2 (RTF2) removal and function during DNA replication
了解 DNA 复制过程中复制终止因子 2 (RTF2) 去除和功能的调节机制
- 批准号:
10490835 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Operating Grants