Atomic Models of Nitrogen Fixation by Nitrogenase from CryoEM Structures
CryoEM 结构中固氮酶固氮的原子模型
基本信息
- 批准号:10313954
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAirAmmoniaAnaerobic BacteriaBindingBioavailableBiologicalCaliforniaChemistryComplexCryoelectron MicroscopyCrystallizationDataData CollectionDiseaseElectron BeamElectron MicroscopyElectron TransportElectronsEnzymesError SourcesEvolutionEyeFood productionFoundationsFreezingGoalsHealthHumanIndustrializationInstitutesKineticsKnowledgeLifeLightMetabolicMethodologyMethodsMicro Electron DiffractionMicroscopeModelingMolybdoferredoxinMultienzyme ComplexesNatureNitrogenNitrogen FixationNitrogenaseOxidoreductasePathway interactionsPhysiologicalPlanet EarthPlayPreparationProceduresProductionProteinsRadialRadiation induced damageReactionResearchResolutionRestRoleSample SizeSamplingSeminalSourceStructureSystemTechniquesTechnologyTemperatureTrainingVisualizationWaterWorkcofactorcryogenicsdata structuredesignelectron radiationexperimental studyflexibilityfrontierhomocitrateinnovationinsightkinetic modelmetalloenzymemethod developmentmicroorganismnitrogenase reductaseparticlepressureprotein structuretime use
项目摘要
PROJECT SUMMARY:
The nitrogenase enzyme complex is the only biological pathway for producing metabolically useful forms of
nitrogen from atmospheric dinitrogen. This two component protein system made up of an obligate reductase,
Fe-protein, and the catalytic protein, MoFe-protein, is only present in a small number of microorganisms, but
produces nearly 50% of all bioavailable nitrogen. Thus, the biological nitrogen fixation mechanism has extremely
important effects on global crop production and human health. Seminal works in the past half century have not
only revealed an intricate kinetic pathway for nitrogenase, but also the most complex metallocluster found in
nature within the MoFe-protein active site. This cluster, known as the FeMo-cofactor, has the composition
[7Fe:9S:1C:1Mo]-R-homocitrate and is only coordinated by two residues within the active site. Electrons are
shuttled through a [4Fe:4S] cluster in the Fe-protein to an [8Fe:7S] center in the MoFe-protein, known as the P-
cluster. These reducing equivalents are then delivered to the active site FeMo-cofactor where substrate reduction
occurs. Four consecutive cycles of electron transfer are required to bind dinitrogen, and four more are required
to fully convert one dinitrogen molecule to two ammonia molecules. It is unknown how the FeMo-cofactor is
primed for substrate binding, how the FeMo-cofactor binds or shuttles electrons to the substrate, or what role
the surrounding active site residues play in substrate reduction. The primary hypothesis of this proposal is
that physical rearrangements of the atoms in the FeMo-cofactor and in the surrounding protein during
substrate reduction are necessary for substrate access and binding to the cofactor, and may further play
a role in the reduction mechanism. The goal of this work is to determine what rearrangements occur in
nitrogenase throughout turnover of substrate by harnessing the power of cryoEM and performing experiments
outlined in two Aims. Aim 1: Structural characterization of resting states of nitrogenase: MoFe protein alone and
the ADP-AlF4- stabilized complex with Fe-protein by single particle cryoEM. Aim 2: Structural characterization of
nitrogenase turnover-related forms by single particle cryoEM. Through the pursual of Aims 1 and 2, I will obtain
training in the field of single particle cryoEM, and each Aim will provide expertise in metalloenzyme chemistry.
The research will be performed at the California Institute of Technology primarily in the well-known CryoEM
Center with ample microscopes and expertise. These Aims will shed much needed light on transient
intermediates within the nitrogenase turnover pathway thereby providing a better foundation for the rational
design of efficient synthetic nitrogen fixation platforms. In addition, the insights and the methodology developed
in this proposal can be applied to other poorly understood metalloenzymes related to human health.
项目总结:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebeccah Warmack其他文献
Rebeccah Warmack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Electrocatalytic Generation of Ammonia from Air and Water
从空气和水中电催化生成氨
- 批准号:
DP220101511 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Discovery Projects
Developing efficient catalysts for elimination of ammonia at room temperature for air quality improvement
开发室温下消除氨的高效催化剂以改善空气质量
- 批准号:
19K15363 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fate, Transport and Transformation of Ammonia Emissions from Animal Feeding Operations and Their Impacts on Air-Soil Health
动物饲养作业中氨排放的归宿、传输和转化及其对空气-土壤健康的影响
- 批准号:
1804720 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine
进气中混入氨气对柴油机燃烧及排放特性的影响
- 批准号:
15K18298 - 财政年份:2015
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mitigation of Pervasive Haber Process Carbon Pollution: Ammonia synthesis from air and water in suspensions of nanoscale Fe/Fe2O3
减轻普遍存在的哈伯法碳污染:在纳米级 Fe/Fe2O3 悬浮液中从空气和水中合成氨
- 批准号:
1505830 - 财政年份:2015
- 资助金额:
$ 6.64万 - 项目类别:
Continuing Grant
Collaborative Research: Ammonia (NH3) Emission from Fertilizer Application: Understanding an Uncertain Input to Air Quality Models
合作研究:施肥过程中的氨 (NH3) 排放:了解空气质量模型的不确定输入
- 批准号:
1233458 - 财政年份:2013
- 资助金额:
$ 6.64万 - 项目类别:
Interagency Agreement
Collaborative Research: Ammonia (NH3) Emission from Fertilizer Application: Understanding an Uncertain Input to Air Quality Models
合作研究:施肥过程中的氨 (NH3) 排放:了解空气质量模型的不确定输入
- 批准号:
1236814 - 财政年份:2013
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Development of photocatalyst for rapid removal of ammonia from indoor air
开发快速去除室内空气中氨的光催化剂
- 批准号:
24710090 - 财政年份:2012
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Partitioning and concentration levels of atmospheric ammonia under transboundary air pollution
跨境空气污染下大气氨的分配和浓度水平
- 批准号:
23310004 - 财政年份:2011
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Compact analyzer for trace ammonia in air
SBIR 第一阶段:空气中痕量氨的紧凑型分析仪
- 批准号:
1047108 - 财政年份:2011
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant














{{item.name}}会员




