Machine Learning Inspired Physical Models in Organs

机器学习启发了器官的物理模型

基本信息

  • 批准号:
    10315919
  • 负责人:
  • 金额:
    $ 4.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The vascular system plays a crucial role in diagnostics, treatment, and surgical planning in a wide array of diseases. Historically, practitioners locate vessel manually on each image of a CT scan. This is a tedious process that can vary highly depending on the individual's experience and ability. Recently, there has been motivation to automate this process to save time and increase accuracy. This process, vessel segmentation, is challenging because of the small size of the vessel structure and the varying contrast and noise in medical images. Current image processing techniques have not been successful in resolving the full vascular systems in humans because of these challenges. However, a novel neural network algorithm has shown potential to reduce training times and increase accuracy per degree of freedom in medical imaging segmentation. Applying this algorithm in the liver vessel segmentation, and eventually other organs' vascular system segmentation shows great promise. In addition to achieving successful vessel segmentation of the full vascular system, there is motivation to create a model that simulates blood flow and mass transportation in the vascular system. This is accomplished by using coupled multidimensional computational models for the flow and transport within the blood vessels. The combination of these two aims will give a complete overview of the location and function of a patient's circulatory system. This research will be completed by the joint effort of the Computational and Applied Mathematics Department at Rice University and the Department of Imaging Physics, Division of Diagnostic Imaging at The University of Texas MD Anderson Cancer Center. The collaborative nature of this project allows mathematicians to work with physicians who are experienced in the diagnosis and treatment of many diseases. Leveraging everyone's strengths and background will allow for a successful development and implementation of this project.
项目摘要 血管系统在诊断、治疗和手术计划中起着至关重要的作用 疾病。历史上,从业者在CT扫描的每个图像上手动定位血管。这是一个繁琐 这一过程可能因个人的经验和能力而有很大差异。最近有 自动化这一过程的动机,以节省时间和提高准确性。这个过程,血管分割, 由于血管结构的小尺寸以及医学中变化的对比度和噪声, 图像.目前的图像处理技术在解决全血管系统方面还没有成功, 人类面临这些挑战。然而,一种新的神经网络算法已经显示出减少 训练时间,并提高医学成像分割中每自由度的准确度。应用该 算法在肝脏血管分割中的应用,最终将其他器官的血管系统分割显示出来 伟大的承诺。除了实现完整血管系统的成功血管分割外, 这是创建模拟血管系统中血液流动和质量输送的模型的动机。这是 通过使用血液内的流动和运输的耦合多维计算模型来实现 船舶.这两个目标的结合将给出一个完整的概述的位置和功能 病人的循环系统。这项研究将由计算科学家的共同努力完成。 莱斯大学应用数学系和成像物理系, 德克萨斯大学MD安德森癌症中心的诊断成像。这种合作的性质 该项目允许数学家与在诊断和治疗方面经验丰富的医生合作, 许多疾病。利用每个人的优势和背景将允许一个成功的发展, 这个项目的实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bilyana Tzolova其他文献

Bilyana Tzolova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bilyana Tzolova', 18)}}的其他基金

Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10544288
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:
Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10686402
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Continuing Grant
CAREER: Physics-inspired Machine Learning with Sparse and Asynchronous p-bits
职业:利用稀疏和异步 p 位进行物理启发的机器学习
  • 批准号:
    2237357
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Continuing Grant
MACHINE LEARNING FOR BIO-INSPIRED NAVIGATION
用于仿生导航的机器学习
  • 批准号:
    2889696
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Studentship
Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10544288
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:
Machine Learning Inspired Physical Models in Organs
机器学习启发了器官的物理模型
  • 批准号:
    10686402
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:
Quantum-Inspired Machine Learning
受量子启发的机器学习
  • 批准号:
    DP200103760
  • 财政年份:
    2020
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Discovery Projects
Biological inspired control and machine learning for clinical rehabilitation and engineering systems
用于临床康复和工程系统的生物启发控制和机器学习
  • 批准号:
    2326976
  • 财政年份:
    2020
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Studentship
Topologically and Geometrically Inspired Machine Learning for Drug Design
用于药物设计的拓扑和几何启发机器学习
  • 批准号:
    2445409
  • 财政年份:
    2020
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Studentship
Deriving genomic signatures via biochemically inspired machine learning to predict chemotherapy resp
通过受生化启发的机器学习导出基因组特征来预测化疗反应
  • 批准号:
    512314-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 4.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Brain inspired machine learning methods for analysis of neural data
用于分析神经数据的受大脑启发的机器学习方法
  • 批准号:
    1895488
  • 财政年份:
    2016
  • 资助金额:
    $ 4.6万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了