Characterization of novel cobalamin-dependent radical SAM methylase via substrate identification in C. difficile
通过艰难梭菌中的底物鉴定表征新型钴胺素依赖性自由基 SAM 甲基化酶
基本信息
- 批准号:10315912
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Anti-Bacterial AgentsAntibiotic ResistanceAntibioticsBacteriaBacterial ProteinsBindingBiochemicalBiochemistryBiogenesisBioinformaticsBiologicalBiological AssayBiologyC-terminalCarbonCharacteristicsChemistryClostridium difficileCobalaminCommunicable DiseasesComplexCrystallizationDataDevelopmentDiseaseEnzymesEscherichia coliFamilyFutureGoalsGrowthGuanosine Triphosphate PhosphohydrolasesHealthHomeostasisHumanInvestigationIronKnowledgeLifeMalignant NeoplasmsMass Spectrum AnalysisMethodsMethylationMethyltransferaseMicrobiologyPathway interactionsPhysiologicalPlayProtein Binding DomainProtein BiosynthesisProteinsProteomicsRadiolabeledReactionResearchResearch PersonnelResolutionRibosomesRoentgen RaysRoleS-AdenosylhomocysteineSolubilityStructureSubgroupSulfurSystemTechniquesTestingTherapeuticTimeTranscobalaminsWorkbasedesigndisorder preventionenzyme structureenzyme substrateexperimental studyglobal healthhuman diseasehuman pathogeninsightmethyl groupnovelprotein expressionprotein purificationtherapeutically effectiveuptake
项目摘要
Project Summary
Biological methylation plays an integral role in human disease by regulating pathways important
for homeostasis, disease prevention and in some scenarios, can even promote disease. For example, in
bacterial ribosome systems, seemingly simple methylations can result in the development of antibiotic
resistance to current antibiotics. For a long time, methylations were known to be completed by an SN2 transfer
of the methyl group from S-Adenosyl methionine (SAM) to a nucleophilic heteroatom. Then, about two
decades ago, it was discovered that iron-sulfur [4Fe-4S] clusters had the ability to promote radical cleavage
of SAM and form 5’-deoxyadenosyl 5’-radical (5’dA•), which can promote radical methylation of
previously unactivated carbon centers! Sequencing capabilities have highlighted the vast presence of these
radical SAM methylases (RSMs) in biology, but it is still unknown what unique chemistries these enzymes are
capable of, and more importantly, how RSMs contribute to human health.
The Booker lab at Penn State has been working on characterizing RSMs that are dependent
on cobalamin (Cbl) as an intermediate methyl carrier during the methylation reaction. Recently, we have
discovered a novel subgroup of Cbl-dependent RSMs that contain an atypical Cbl-binding protein
domain. Previously unannotated, and referred to as a domain of unknown function (DUF512), this domain
differs from the canonical Cbl-binding domains, as it is C-terminal to the RS motif. Using bioinformatics, we
have identified ~4000 proteins that contain DUF512, including one from the important human pathogen
Clostridioides difficile. We expect the C. difficile DUF512 (cdDUF512) enzyme to perform a radical based
methylation on an unactivated carbon center of a protein substrate. Preliminary work, has shown that
cdDUF512 is connected to ribosome maturation, and we hypothesize that cdDUF512 methylates EngA, an
essential GTPase that stabilizes the 50S subunit of the ribosome. Ribosomal protein synthesis is a
significant antibiotic target, thus highlighting the importance of the proposed work as we uncover cdDU512’s
mechanism in C. difficile.
We propose the investigation of cdDUF512, to decipher the structural importance of the novel DUF512
domain, identify the biological substrate of these enzymes, and understand the biological importance in
C. difficile, while creating a roadmap for future RSM annotation. First, the x-ray crystal structure for cdDUF512
will be solved to decipher its important binding characteristics. Second, we will examine cdDUF512’s
connection to ribosome maturation with a combined biochemical and proteomic approach. Lastly, we will use a
radiolabeling technique, which was developed in the Booker lab, to track the methylation in cellular lysate
to identify the biological substrate. In all, we hope to progress the field of radical SAM chemistry forward,
while deciphering mechanisms that will contribute to future antibiotic development.
项目概要
生物甲基化通过调节重要途径在人类疾病中发挥着不可或缺的作用
用于体内平衡、疾病预防,在某些情况下甚至可以促进疾病。例如,在
细菌核糖体系统,看似简单的甲基化可以导致抗生素的开发
对当前抗生素的耐药性。长期以来,甲基化被认为是通过 SN2 转移完成的
将甲基从 S-腺苷甲硫氨酸 (SAM) 转变为亲核杂原子。然后,大约两
几十年前,人们发现铁硫[4Fe-4S]簇具有促进自由基裂解的能力
SAM 并形成 5'-脱氧腺苷 5'-自由基 (5'dA•),可促进 SAM 的自由基甲基化
以前未活化的碳中心!测序能力凸显了这些的广泛存在
生物学中的自由基 SAM 甲基化酶 (RSM),但仍不清楚这些酶的独特化学性质
更重要的是,RSM 能够为人类健康做出贡献。
宾夕法尼亚州立大学的布克实验室一直致力于表征依赖的 RSM
钴胺素(Cbl)作为甲基化反应过程中的中间甲基载体。最近,我们有
发现了 Cbl 依赖性 RSM 的新亚组,其中含有非典型 Cbl 结合蛋白
领域。该结构域以前未注释,被称为未知功能结构域 (DUF512)
与典型的 Cbl 结合域不同,因为它位于 RS 基序的 C 端。利用生物信息学,我们
已鉴定出约 4000 种含有 DUF512 的蛋白质,其中一种来自重要的人类病原体
艰难梭菌。我们期望艰难梭菌 DUF512 (cdDUF512) 酶能够执行基于自由基的操作。
蛋白质底物未活性碳中心的甲基化。初步工作表明
cdDUF512 与核糖体成熟有关,我们假设 cdDUF512 甲基化 EngA,
稳定核糖体 50S 亚基的必需 GTP 酶。核糖体蛋白质的合成是
重要的抗生素靶标,因此在我们发现 cdDU512 时强调了拟议工作的重要性
艰难梭菌中的机制。
我们建议对 cdDUF512 进行研究,以破译新型 DUF512 的结构重要性
域,识别这些酶的生物底物,并了解其生物学重要性
C. difficile,同时为未来的 RSM 注释创建路线图。一、cdDUF512的x射线晶体结构
将被解决以破译其重要的结合特征。其次,我们将检查 cdDUF512
结合生化和蛋白质组学方法与核糖体成熟的联系。最后,我们将使用一个
布克实验室开发的放射性标记技术,用于追踪细胞裂解物中的甲基化
识别生物底物。总之,我们希望推动自由基 SAM 化学领域的发展,
同时破译有助于未来抗生素开发的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Elizabeth Solinski其他文献
Amy Elizabeth Solinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Elizabeth Solinski', 18)}}的其他基金
Characterization of novel cobalamin-dependent radical SAM methylase via substrate identification in C. difficile
通过艰难梭菌中的底物鉴定表征新型钴胺素依赖性自由基 SAM 甲基化酶
- 批准号:
10682625 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Characterization of novel cobalamin-dependent radical SAM methylase via substrate identification in C. difficile
通过艰难梭菌中的底物鉴定表征新型钴胺素依赖性自由基 SAM 甲基化酶
- 批准号:
10474316 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
相似海外基金
The effects of antibiotics to the transfer frequency of the antibiotic resistance genes and the evolution of high-level resistance.
抗生素对抗生素抗性基因转移频率和高水平抗性进化的影响。
- 批准号:
22K05790 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/2 - 财政年份:2019
- 资助金额:
$ 6.6万 - 项目类别:
Research Grant
Combating Antibiotic Resistance to Aminoglycoside Antibiotics through Chemical Synthesis
通过化学合成对抗氨基糖苷类抗生素的耐药性
- 批准号:
392481159 - 财政年份:2017
- 资助金额:
$ 6.6万 - 项目类别:
Research Fellowships
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/1 - 财政年份:2016
- 资助金额:
$ 6.6万 - 项目类别:
Research Grant
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019857/1 - 财政年份:2016
- 资助金额:
$ 6.6万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
366555 - 财政年份:2016
- 资助金额:
$ 6.6万 - 项目类别:
Operating Grants
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019717/1 - 财政年份:2016
- 资助金额:
$ 6.6万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
361307 - 财政年份:2016
- 资助金额:
$ 6.6万 - 项目类别:
Operating Grants
Contamination status of antibiotics and antibiotic resistance genes (ARGs) in tropical Asian aquatic environments with artificial and natural disturbance
人工和自然干扰下亚洲热带水生环境中抗生素和抗生素抗性基因(ARG)的污染状况
- 批准号:
25257402 - 财政年份:2013
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RAPID: COLLABORATIVE RESEARCH: Fate and Transport of Antibiotics and Antibiotic Resistance Genes During Historic Colorado Flood
快速:合作研究:历史性科罗拉多洪水期间抗生素和抗生素抗性基因的命运和运输
- 批准号:
1402635 - 财政年份:2013
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant














{{item.name}}会员




