High-throughput Optimization of Polymeric Nanoparticles for Small RNA Delivery to Treat Glioblastoma
用于治疗胶质母细胞瘤的小 RNA 递送的聚合物纳米颗粒的高通量优化
基本信息
- 批准号:10314020
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-06 至 2021-07-07
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAftercareBiocompatible MaterialsBiological AssayBlood - brain barrier anatomyBypassCell CommunicationCell modelCellsCerebrospinal FluidChemotherapy and/or radiationClinical TrialsDataDiagnosisDiffuseDiffusionDrug Delivery SystemsEngineeringEnvironmentEpigenetic ProcessEstersExcisionFormulationGenerationsGeneticGlioblastomaGroup StructureHeterogeneityHumanIn VitroInfiltrationKnowledgeLibrariesMalignant NeoplasmsMalignant neoplasm of brainMediatingMethodsMicroRNAsMusNeuraxisNeuronsOperative Surgical ProceduresPathway interactionsPatientsPenetrationPerformancePermeabilityPhenotypePolymer ChemistryPolymersPropertyPumpRNA deliveryRecurrenceReporter GenesResearchSignal TransductionSmall Interfering RNASmall RNASpecificityStructureStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTherapeuticTumor BurdenTumor TissueUnited StatesUntranslated RNAValidationWorkXenograft procedureaggressive therapybasebiodegradable polymerbrain tissuecancer cellcancer diagnosiscell typeclinical applicationclinical translationclinically translatablecolloidal nanoparticlecombinatorialdesignexperimental studygene therapyhigh throughput screeninghuman modelimprovedin vitro Assayin vivoinnovationinsightknock-downmigrationnanomedicinenanoparticlenanoparticle deliveryneoplastic cellnext generationnovelnovel therapeutic interventionscreeningself-renewalsurface coatingtargeted treatmenttherapeutic nanoparticlestumortumor growthtumorigenesisuptake
项目摘要
Nearly 50,000 new cases of glioblastoma (GBM) are diagnosed in the United States each year, with a dismal
median survival of 14.6 months. Currently available therapeutics are largely ineffective due to the genetic,
epigenetic, and signaling heterogeneity within the GBM tumor. Non-coding small RNAs such as short
interfering RNA and micro-RNA are emerging as potent epigenetic regulators of cell fate and oncogenesis, and
represent a promising tailored therapeutic strategy to counter tumor cell heterogeneity. However, clinical
translation of small RNAs has been limited by significant knowledge gaps regarding their safe and effective
delivery to GBM cells. The overall objective of this study is to use high-throughput screening approaches to
optimize poly(beta-amino ester) (PBAE) polymeric nanoparticles for therapeutic small RNA delivery to treat
GBM. Our preliminary data have shown that 1st generation PBAE materials enabled small RNA delivery to
inhibit GBM proliferative phenotype in vitro and significantly slowed GBM tumor growth in GBM xenografts in
vivo. However, these nanoparticles need to be optimized in delivery efficiency, biomaterial-mediated tumor
targeting, long-term nanoparticle colloidal stability, and permeation throughout the tumor bulk to further their
clinical translatability. To develop optimized 2nd generation PBAE nanoparticle formulations, the proposed work
will utilize novel high-throughput approaches to generate polymer structural diversity and screen hundreds of
unique polymer structures in parallel to identify delivery materials of improved potency and cancer targeting. In
Aim 1, innovative in vitro assays examining nanoparticle performance in overcoming critical intracellular
delivery barriers such as nanoparticle uptake and endosomal escape will be performed in primary patient-
derived GBM cell models to better predict nanoparticle performance in vivo. Furthermore, these assays will
yield important structure-functional relationships on how biomaterial structures can be altered to control their
interactions with cells in a cancer-selective manner. In Aim 2, nanoparticle surface engineering techniques will
be employed to enhance nanoparticle stability and tumor penetration capabilities. Orthotopic GBM tumor
bearing mice will be treated with optimized nanoparticle formulations to characterize nanoparticle diffusion
throughout the tumor bulk. This is critical in achieving uniform nanoparticle delivery as well as in reaching
infiltrative GBM cells at the tumor periphery, which are primarily responsible for tumor recurrence after
treatment. Finally, in Aim 3, nanoparticles carrying two GBM-inhibiting micro-RNAs will be evaluated for their
ability to reduce GBM proliferation and self-renewal. State of the art primary human GBM cell models will be
used to assess nanoparticle-induced phenotypic changes in vitro, and nanoparticles will also be infused into
tumor-bearing mice to assess therapeutic delivery in the 3D tumor environment in vivo. These findings will
have substantial positive impact on developing a scalable, bio-degradable small RNA delivery system to treat
brain cancer.
在美国,每年诊断出近50,000例胶质母细胞瘤(GBM)新病例,
中位生存期为14.6个月。目前可用的治疗剂由于遗传原因在很大程度上是无效的,
GBM肿瘤内的表观遗传和信号异质性。非编码小RNA,如短
干扰RNA和微小RNA正在成为细胞命运和肿瘤发生的有效表观遗传调节因子,
代表了一种有前景的定制治疗策略,以对抗肿瘤细胞异质性。但临床
小RNA的翻译受到关于其安全性和有效性的重大知识缺口的限制,
递送至GBM细胞。本研究的总体目标是使用高通量筛选方法,
优化用于治疗性小RNA递送的聚(β-氨基酯)(PBAE)聚合物纳米颗粒,
GBM。我们的初步数据表明,第一代PBAE材料能够将小RNA递送到
抑制体外GBM增殖表型并显著减缓GBM异种移植物中GBM肿瘤生长,
vivo.然而,这些纳米颗粒需要在递送效率、生物材料介导的肿瘤
靶向、长期纳米颗粒胶体稳定性和贯穿肿瘤块的渗透,以进一步提高其
临床可译性为了开发优化的第二代PBAE纳米颗粒制剂,所提出的工作
将利用新的高通量方法来产生聚合物结构多样性,并筛选数百种
独特的聚合物结构,以确定提高效力和癌症靶向的递送材料。在
目的1,创新的体外试验,检查纳米颗粒在克服关键细胞内
将在原发性患者中进行递送屏障,例如纳米颗粒摄取和内体逃逸,
衍生的GBM细胞模型,以更好地预测体内纳米颗粒的性能。此外,这些分析将
产生重要的结构-功能关系,关于如何改变生物材料的结构以控制其
以癌症选择性的方式与细胞相互作用。在目标2中,纳米颗粒表面工程技术将
用于增强纳米颗粒稳定性和肿瘤穿透能力。原位GBM肿瘤
将用优化的纳米颗粒制剂处理荷瘤小鼠以表征纳米颗粒扩散
在整个肿瘤块中。这对于实现均匀的纳米颗粒递送以及实现纳米颗粒的纳米化是至关重要的。
在肿瘤周围的浸润性GBM细胞,其主要负责肿瘤复发后,
治疗最后,在目标3中,将评估携带两种GBM抑制性微RNA的纳米颗粒的生物学活性。
减少GBM增殖和自我更新的能力。现有技术水平的原代人GBM细胞模型将是
用于评估纳米颗粒诱导的体外表型变化,纳米颗粒也将被注入
荷瘤小鼠体内3D肿瘤环境中评估治疗递送。这些发现将
对开发一种可扩展的、可生物降解的小RNA递送系统以治疗
脑癌
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Rui其他文献
Yuan Rui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
-- - 项目类别:














{{item.name}}会员




