Improving Safety of Cardiovascular Implantable Electronic Devices in Veterans
提高退伍军人心血管植入电子设备的安全性
基本信息
- 批准号:10312661
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic DetailingAddressAdverse eventAnxietyArea Under CurveArrhythmiaAssessment toolBiometryCalibrationCaliforniaCardiacCardiovascular DiseasesCardiovascular systemCause of DeathCessation of lifeClinicalComplexDataData AnalyticsData ScienceData SetData SourcesDevelopmentDevice SafetyDevicesDiscriminationElectronic Health RecordElectronicsEvaluationEventFailureFeedbackFutureGoalsHealthHealth ServicesHealthcare SystemsImplantImplantable DefibrillatorsIndividualInformation SystemsInterventionInterviewKnowledgeLeadLearningLifeLinkMalignant - descriptorMandatory ProgramsManufacturer NameMeasuresMechanicsMedicareMedicineMentorsMethodologyModelingMonitorPacemakersPainPatient riskPatientsPersonsPhysiciansPilot ProjectsPopulationProbabilityPublicationsPublishingQualitative MethodsQuality of CareQuality of lifeRegistriesRepeat SurgeryReportingResearchResearch PersonnelResourcesRiskRisk AssessmentRoleSafetySan FranciscoSavingsShockSignal TransductionStatistical MethodsStressSurveillance ProgramSurvival AnalysisSystemTechniquesTrainingTranslatingUnited States Food and Drug AdministrationUniversitiesVeteransadjudicateadverse outcomecardiac devicecardiac implantcareer developmentcomparativedata warehouseexperiencefollow-upimplantationimplementation scienceimplementation strategyimprovedimproved outcomeindividual patientinnovationlongitudinal databasemachine learning methodnovelpost interventionpredictive modelingpreventprofessorprogramsprospectiverandom forestremote monitoringrisk prediction modelskillsstatisticssupervised learningtransmission process
项目摘要
Background: This proposal is intended to support the career development of Sanket Dhruva, MD, MHS, a
Staff Cardiologist at the San Francisco VA and Assistant Professor of Medicine at the University of California,
San Francisco into an independent VA health services researcher with the training and experience necessary
to conduct innovative research and develop interventions that improve safety of Veterans with cardiovascular
implantable electronic devices (CIEDs: pacemakers and implantable cardioverter defibrillators [ICDs]). Even
though more than 10% of the 55,000 Veterans followed by VA have suffered CIED-related complications, there
has not been any systematic evaluation to identify failed CIED leads using VA’s data systems.
Significance/Impact: This research will close Dr. Dhruva’s knowledge gaps in biostatistics, data science, and
qualitative methods, enabling him to generate actionable, high-quality evidence to inform VA cardiac
electrophysiologists to implant the safest devices in Veterans. This research will also enable him to identify
CIED leads that have already been implanted in Veterans but are at risk for failure, thereby informing
strategies to avoid clinical sequelae of failure (such as inappropriate shocks and death) for individual Veterans.
This proposal is directly aligned with operational priorities set forth in VHA Directive 1189 (published in January
2020) to “monitor the safety of CIEDs,” HSR&D Priorities of a Learning Healthcare System and improving
Veteran Quality of Care and Safety, and supports VHA’s priority of becoming a High-Reliability Organization.
Innovation: This research is innovative through its application of advanced statistical methods to leverage a
comprehensive, longitudinal database of Veterans with CIEDs, the VA National Cardiac Device Surveillance
Program (NCDSP), including temporally dense CIED-generated data, to address the large-scale, complex
problem of identifying CIED lead failure. Additionally, this research provides information about the unexplored
question of physician selection of manufacturer and model of device to implant and the role of safety data.
Specific Aims: Aim 1: To compare risk-adjusted failure rates of different cardiovascular implantable
electronic device (CIED) lead models among Veterans.
H1: We will detect one or more CIED lead models with statistically and clinically significantly higher failure
rates when compared to other leads of the same type (e.g. ICD lead when compared to all other ICD leads).
Aim 2: To develop risk prediction models of all-cause CIED lead failure among Veterans by applying
supervised machine learning methods to repeated measures from CIED remote monitoring data.
H2: Risk prediction models will detect lead failure with high discrimination (area under the curve [AUC] ≥0.85)
and adequate calibration at 3 months and 12 months post-assessment.
Aim 3: To conduct a pilot study to determine the effect of an academic detailing and audit and
feedback intervention on the specific CIED lead models implanted in Veterans.
H3: Post-intervention, Veterans will more often be implanted with lead models associated with the lowest
failure rates.
Methodology: Aim 1 will use sequential propensity score-adjusted simulated prospective survival analyses
applied to a dataset of the NCDSP linked to VA’s Corporate Data Warehouse and Medicare data. Aim 2 will
apply two supervised machine learning techniques, elastic net and random forests, to quarterly patient-
generated data from CIEDs to create prediction models. Aim 3 will include qualitative interviews of cardiac
electrophysiologists about device selection and the development, implementation, and evaluation of an
academic detailing and audit and feedback intervention for cardiac electrophysiologists in 3 VISNs.
Implementation: This research will enable Dr. Dhruva to become an independent VA HSR&D investigator who
conducts research to improve outcomes for Veterans with CIEDs and those who will receive one in the future.
背景:本提案旨在支持Sanket Dhruva,MD,MHS,a
旧金山弗朗西斯科的心脏病专家和加州大学的医学助理教授,
弗朗西斯科成为一个独立的退伍军人管理局卫生服务研究员与培训和经验的必要
开展创新研究,开发干预措施,提高心血管疾病退伍军人的安全性
植入式电子器械(CIED:起搏器和植入式心律转复除颤器[ICD])。甚至
虽然超过10%的55,000退伍军人其次是退伍军人遭受CIED相关的并发症,
还没有任何系统的评价,以确定失败的CIED铅使用VA的数据系统。
意义/影响:这项研究将填补Dhruva博士在生物统计学,数据科学和生物统计学方面的知识空白。
定性方法,使他能够生成可操作的高质量证据,
电生理学家在退伍军人中植入最安全的设备。这项研究还将使他能够识别
CIED电极导线已植入退伍军人体内,但存在失效风险,从而告知
为个别退伍军人避免临床失败后遗症(如不适当的电击和死亡)的策略。
该提案与VHA指令1189(1月发布)中规定的运营优先事项直接一致
2020年),以“监测CIED的安全性”,HSR&D学习医疗保健系统的优先事项,并改善
退伍军人护理和安全的质量,并支持VHA的优先事项成为一个高可靠性的组织。
创新:这项研究是创新的,通过其先进的统计方法的应用,以利用
全面的,纵向数据库的退伍军人与CIEDs,弗吉尼亚州国家心脏设备监测
程序(NCDSP),包括时间密集的CIED生成的数据,以解决大规模的,复杂的
识别CIED引线故障的问题。此外,这项研究提供了有关未开发的信息。
医生选择制造商和植入器械型号的问题以及安全性数据的作用。
具体目的:目的1:比较不同心血管植入式心脏瓣膜植入物的风险调整后失败率
电子设备(CIED)在退伍军人中的领先地位。
H1:我们将检测一个或多个CIED电极导线型号,其故障率在统计学和临床上显著更高
与同类型的其他电极导线相比的比率(例如,与所有其他ICD电极导线相比的ICD电极导线)。
目的2:通过应用,开发退伍军人全因CIED电极导线失效的风险预测模型。
有监督的机器学习方法从CIED远程监测数据中重复测量。
H2:风险预测模型将以高区分度检测电极导线失效(曲线下面积[AUC] ≥0.85)
并在评估后3个月和12个月进行充分校准。
目标3:进行试点研究,以确定学术细节和审计的效果,
对植入退伍军人体内的特定CIED电极导线型号进行反馈干预。
H3:干预后,退伍军人将更经常地植入与最低
失败率
方法:目标1将使用序贯倾向评分调整的模拟前瞻性生存分析
应用于NCDSP的数据集,该数据集链接到VA的企业数据仓库和医疗保险数据。目标2将
应用两种监督机器学习技术,弹性网络和随机森林,以季度病人-
从CIED生成数据以创建预测模型。目标3将包括心脏病患者的定性访谈
电生理学家关于设备选择和开发,实施和评估的一个
3个VISN中心脏电生理学家的学术详细说明、审计和反馈干预。
实施:这项研究将使Dhruva博士成为独立的VA HSR&D研究员,
进行研究,以改善与CIED退伍军人和那些谁将在未来收到一个结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanket S Dhruva其他文献
Sanket S Dhruva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanket S Dhruva', 18)}}的其他基金
Improving Safety of Cardiovascular Implantable Electronic Devices in Veterans
提高退伍军人心血管植入电子设备的安全性
- 批准号:
10552536 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




