Brain connectivity and genetics as predictors of opioid abuse treatment outcomes
大脑连接和遗传学作为阿片类药物滥用治疗结果的预测因素
基本信息
- 批准号:10316149
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAllelesAmericasAnatomyBig DataBiological MarkersBrainBrain imagingBuprenorphineCessation of lifeCharacteristicsClinicClinicalComplexCorpus striatum structureDataDevelopmentDiffusion Magnetic Resonance ImagingDoseDropsDrug usageEpidemicFeeling suicidalFutureGenesGeneticGenetic RiskGenotypeHabenulaHumanImageInsula of ReilKnowledgeMachine LearningMagnetic Resonance ImagingMaintenanceMaintenance TherapyMeasuresMedicineMental HealthMethadoneMethodsModalityNicotinic ReceptorsOpiate AddictionOpioidOpioid abuserOutcomeOutcome StudyPain managementPatientsPharmaceutical PreparationsPlayPrediction of Response to TherapyPsychiatryRelapseResource AllocationResourcesRestRewardsRiskRoleSNP genotypingScanningSingle Nucleotide PolymorphismStructureSuicide attemptTestingTherapeuticTrainingTreatment outcomeUrineVariantVeteransWorkaddictionbasebrain circuitrybuprenorphine treatmentcompliance behaviordisorder riskdosagefentanyl overdosefollow-upgenetic variantillicit opioidimaging geneticsimprovedinterestmachine learning algorithmmachine learning modelmethadone treatmentmorphometrymortality riskmu opioid receptorsneural circuitnon-opioid analgesicopioid abuseopioid useopioid use disorderopioid useroutcome predictionpersonalized medicineprospectiverational designsuccesssuicidaltreatment durationvolunteerwhite matter
项目摘要
Opioid use disorder (OUD) is a major problem in America, currently reaching epidemic levels.
Unfortunately, OUD is especially prevalent among Veterans, as it is common that Veterans need pain
treatment and the liberal use of opioids in medicine is one of the major reasons why the OUD problem
keeps growing.
There are good treatment options for OUD: Both buprenorphine and methadone can be used in
maintenance therapies in which, as long as the patient stays in treatment, they will not likely truly abuse
opioids. This is extremely important as one major reason for death in OUD is death by fentanyl
overdose, and a patient in maintenance therapies will likely avoid that fate. However, it is very common
that patients discontinue treatment.
An important gap in knowledge arises from the fact that we have no means to predict which patients
are more likely to drop from treatment. Such prediction would be of great interest as limited resources
could be optimally allocated. In addition, an understanding of the brain circuitry behind both OUD and
OUD treatment outcomes is necessary for the rational design of the next wave of therapeutic
approaches.
Big data approaches to scientific questions are increasingly common, however in psychiatry advances
are (as usual, psychiatry likely being the most complex field in medicine) lagging. We have shown that
using a machine learning approach to human brain imaging analysis, we can classify psychiatric
patients according to past suicide attempt and high suicide ideation. We propose to use a similar (albeit
improved) approach to the prediction of buprenorphine treatment in Veterans with OUD.
We propose to use different MRI modalities (structure, white matter, resting state functional
connectivity) and limited genotyping (two single nucleotide polymorphisms in the µ opioid receptor and
the α 5 nicotinic acetylcholine receptor subunit known to be associated with OUD risk) in machine
learning algorithms to predict OUD treatment outcomes. MRI and genetics will be collected before
treatment and MRI again within 10 days of treatment initiation (with a smaller group imaged at 6 months
also), and Veterans will be followed up to study outcomes.
If successful, this proposal would provide both mechanistic data (brain circuitry and function, including
a genetic component) about OUD and OUD treatment outcome, and an unbiased approach to OUD
treatment prediction.
阿片类药物使用障碍(OUD)在美国是一个主要问题,目前处于流行水平。
不幸的是,在退伍军人中尤其普遍存在,因为退伍军人需要痛苦
治疗和对医学中阿片类药物的自由使用是OUD问题的主要原因之一
不断增长。
OUD有良好的治疗选择:丁丙诺啡和Meadadone都可以在
维护疗法,只要患者留在治疗中,他们就不会真正滥用
阿片类药物。这非常重要,因为在OUD中死亡的主要原因之一是芬太尼死亡
服用过量,维护疗法的患者可能会避免这种命运。但是,这很常见
患者停止治疗。
知识的一个重要差距来自以下事实:我们没有能够预测哪些患者
更有可能退出治疗。作为有限的资源,这种预测将引起极大的兴趣
可以最佳分配。此外,对Oud和Oud背后的大脑电路的理解
OUD治疗结果对于下一波治疗的合理设计是必需的
方法。
关于科学问题的大数据方法越来越普遍,但是在精神病学进步中
(像往常一样,精神病学可能是医学中最复杂的领域)落后。我们已经表明
使用机器学习方法进行人脑成像分析,我们可以对精神病进行分类
患者根据过去的自杀未遂和高自杀的想法。我们建议使用类似的(尽管
改进的方法可以预测OUD退伍军人的丁丙诺啡治疗方法。
我们建议使用不同的MRI模式(结构,白质,静止状态功能
连通性)和有限的基因分型(µ阿片受体中的两个单一核苷酸多态性和
α5烟碱乙酰胆碱受体亚基已知与机器中的OUD风险相关)
学习算法以预测OUD治疗结果。 MRI和遗传学将在之前收集
在治疗计划后的10天内再次进行治疗和MRI(在6个月时成像较小
同样),将跟踪退伍军人以研究结果。
如果成功,该建议将提供机械数据(脑电路和功能,包括
关于Oud和Oud治疗结果的遗传成分),以及一种公正的OUD方法
治疗预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAMIRO SALAS其他文献
RAMIRO SALAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAMIRO SALAS', 18)}}的其他基金
Brain connectivity and genetics as predictors of opioid abuse treatment outcomes
大脑连接和遗传学作为阿片类药物滥用治疗结果的预测因素
- 批准号:
10012446 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Brain connectivity and genetics as predictors of opioid abuse treatment outcomes
大脑连接和遗传学作为阿片类药物滥用治疗结果的预测因素
- 批准号:
10595492 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Virtual World/Neurofeedback Real Time Functional MRI Approach to PTSD Treatment
虚拟世界/神经反馈实时功能 MRI 治疗 PTSD 的方法
- 批准号:
10174842 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Multimodal Imaging of Reward Brain Centers in Tobacco Smoking Veterans
吸烟退伍军人奖励大脑中心的多模态成像
- 批准号:
8967206 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Multimodal Imaging of Reward Brain Centers in Tobacco Smoking Veterans
吸烟退伍军人奖励大脑中心的多模态成像
- 批准号:
8736254 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Multimodal Imaging of Reward Brain Centers in Tobacco Smoking Veterans
吸烟退伍军人奖励大脑中心的多模态成像
- 批准号:
8883109 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain connectivity and genetics as predictors of opioid abuse treatment outcomes
大脑连接和遗传学作为阿片类药物滥用治疗结果的预测因素
- 批准号:
10012446 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
- 批准号:
9254310 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
- 批准号:
9518200 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Leveraging ancestral diversity to map adiposity loci in Hispanics
利用祖先多样性绘制西班牙裔肥胖基因座
- 批准号:
8912466 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Leveraging ancestral diversity to map adiposity loci in Hispanics
利用祖先多样性绘制西班牙裔肥胖基因座
- 批准号:
9127221 - 财政年份:2014
- 资助金额:
-- - 项目类别: