Development of a wound-on-chip model to study stromal-epithelial interactions during tissue repair
开发芯片伤口模型来研究组织修复过程中基质-上皮相互作用
基本信息
- 批准号:10316239
- 负责人:
- 金额:$ 20.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdipose tissueAffectAgingAlpha GranuleAmericanAmputationAnimal ModelAnimalsArchitectureBenchmarkingBiological AssayBiological ModelsBiomimeticsCRISPR-mediated transcriptional activationCell LineCellsCicatrixCoculture TechniquesCollagenCommunitiesDataDependenceDepositionDermalDermisDevelopmentEmbryoEngineeringEpidermisEpithelialEpithelial CellsEpithelial-Stromal CommunicationExhibitsExtracellular MatrixFailureFibroblastsFibrosisGene ExpressionGenesGoalsGranulation TissueHemostatic functionHumanHydrogelsIn VitroInflammationInjuryLinkMeasuresMediatingMedicalMethodsModelingMolecularMorphogenesisNatural regenerationOutcomePathologicPhaseProcessProxyPublishingResearchSkin TissueSourceSpeedSystemTechniquesTechnologyTestingThickTimeTissuesTranslationsWound modelsbasechronic ulcerchronic woundcost estimatediabetic patientepithelial injuryepithelial woundgenome editinghealingin vitro Modelin vivoin vivo Modelindividual patientinsightinterestkeratinocyteknock-downmigrationmonolayernovelopen woundoverexpressionregenerativerepairedresponserestorationspecies differencetissue regenerationtissue repairwoundwound bedwound closurewound healing
项目摘要
The goal of this proposal is to engineer a novel in vitro biomimetic wound healing model to study how human
fibroblasts and epithelial cells coordinate tissue closure at the cellular and molecular level. In vivo wound healing
is a dynamic morphogenetic process with the goal to close and restore the damaged tissue. A critical stage
during tissue closure is re-epithelialization of wounds, a process by which epithelial cells migrate over the
denuded wound bed, to restore the barrier. Failure of wounds to re-epithelialize results in chronic wound
formation, a condition that affect 6 million Americans annually and carries an estimated cost of US $25 billion
per year for the medical system. Hence, understanding the mechanisms that drive re-epithelialization has been
a central focus in wound healing research. Due to limitations with animal models, in vitro models have been
instrumental to study re-epithelialization by human epithelial cells. Traditional models, such as the scratch wound
assay, involve scratching of a monolayer of epithelial cells adherent to a planar substrate, and the time for
migrating cells to repopulate the scratch is measured as a proxy for healing. In more advanced co-culture models,
the planar substrate is either replaced by a fibroblast-laded collagen hydrogel or by a dermal tissue explant.
Whereas these models have a pre-defined substrate as a migration base for epithelial cells, in vivo studies have
shown that for full-thickness wounds, the deeper fibrous layers must heal first through the formation of
granulation tissue by fibroblasts, before epithelial cells can migrate over this provisional tissue to close the
wound. Thus, in in vivo settings, re-epithelialization occurs as fibroblasts deposit a provisional template and
reciprocal interactions between fibroblasts an epithelial cells coordinate closure of these two tissue layers.
Current in vitro models don't capture this intricate tissue dynamics. Given the dependency of re-epithelialization
on the underlying substrate, we hypothesize that fibroblasts mediate the rate of re-epithelialization during wound
closure. To address this hypothesis, we propose in aim 1 to build a biomimetic in vitro wound closure model
wherein re-epithelialization ensues fibrous tissue repair in wounded engineered microtissues to emulate healing
of full thickness wounds. In aim 2, we will use state-of-the art genome editing techniques to elucidate fibroblast-
epithelial interactions that regulate fibrous tissue closure and re-epithelialization. These studies will also validate
and benchmark our 3D biomimetic model to other wound healing models. In aim 3, we will explore whether
fibroblasts from different healthy and pathological tissue sources affect re-epithelialization in our biomimetic
model. Ultimately, this project aims to establish a basis for optimizing a wound bed that enables rapid re-
epithelialization as a paradigm for promoting tissue regeneration and minimizing scarring.
该提案的目标是设计一种新的体外仿生伤口愈合模型,以研究人类如何在伤口愈合过程中发挥作用。
成纤维细胞和上皮细胞在细胞和分子水平上协调组织闭合。体内伤口愈合
是一个动态的形态发生过程,目的是闭合和恢复受损组织。关键阶段
在组织闭合过程中,伤口的再上皮化是上皮细胞在伤口上迁移的过程。
裸露的伤口床恢复屏障伤口不能再上皮化导致慢性伤口
这种疾病每年影响600万美国人,估计花费250亿美元
每年,医疗系统。因此,了解驱动上皮再生的机制已经成为
伤口愈合研究的中心焦点。由于动物模型的局限性,体外模型已经被广泛应用。
有助于研究人上皮细胞的上皮再形成。传统的模型,比如抓伤
测定,包括刮擦粘附于平面基底的单层上皮细胞,以及刮擦的时间。
迁移细胞以重新填充划痕被测量为愈合的代表。在更先进的共培养模型中,
平面基底或者被载有成纤维细胞的胶原水凝胶或者被真皮组织外植体替代。
尽管这些模型具有预定义的底物作为上皮细胞的迁移基础,但体内研究已经证实了这些模型的有效性。
表明对于全层伤口,较深的纤维层必须首先通过形成
在上皮细胞可以在该临时组织上迁移以闭合肉芽组织之前,
伤口因此,在体内环境中,当成纤维细胞存款临时模板时发生上皮再形成,
成纤维细胞和上皮细胞之间的相互作用协调这两个组织层的闭合。
目前的体外模型无法捕捉到这种复杂的组织动力学。考虑到上皮再生的依赖性
在底层基质上,我们假设成纤维细胞介导了创伤过程中的再上皮化速率
结束为了解决这一假设,我们在目标1中提出建立一个仿生体外伤口闭合模型
其中再上皮化增强受伤的工程化微组织中的纤维组织修复以模拟愈合
全层伤口在目标2中,我们将使用最先进的基因组编辑技术来阐明成纤维细胞-
调节纤维组织闭合和再上皮化的上皮相互作用。这些研究还将验证
并将我们的3D仿生模型与其他伤口愈合模型进行比较。在目标3中,我们将探讨
来自不同健康和病理组织来源的成纤维细胞影响我们的仿生
模型最终,该项目旨在为优化伤口床奠定基础,使其能够快速重新定位。
上皮形成作为促进组织再生和最小化瘢痕形成的范例。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical response of cardiac microtissues to acute localized injury.
- DOI:10.1152/ajpheart.00305.2022
- 发表时间:2022-10-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hacking mechanical memory
黑客机械记忆
- DOI:10.1016/j.bpj.2023.03.012
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Eyckmans, Jeroen
- 通讯作者:Eyckmans, Jeroen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeroen Eyckmans其他文献
Jeroen Eyckmans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeroen Eyckmans', 18)}}的其他基金
Development of a wound-on-chip model to study stromal-epithelial interactions during tissue repair
开发芯片伤口模型来研究组织修复过程中基质-上皮相互作用
- 批准号:
9979310 - 财政年份:2020
- 资助金额:
$ 20.63万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 20.63万 - 项目类别:
Research Grant