Cellular and molecular mechanisms underlying the formation of sibling cell size asymmetry

兄弟细胞大小不对称形成的细胞和分子机制

基本信息

  • 批准号:
    10316211
  • 负责人:
  • 金额:
    $ 29.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Project Abstract/Summary The human body contains ~ 3.72 x 1013 cells and 200 different cell types. Generating the right number of cells overall and enough specialized cells is vital for building functional organs and tissues. How developing organisms generate and maintain cells with specialized functions and fates is a fundamental problem in biology. Asymmetric cell division is an evolutionary conserved mechanism to create sister cells with different fate. Cell fate differences can be implemented through the formation of unequal sized siblings. This form of asymmetric cell division – here also referred to as physical asymmetry - is developmentally controlled since several metazoan cell types actively induce sibling cell size asymmetry or prevent the formation of sibling cells differing in their size. Physical asymmetric cell division can be induced by positioning the cleavage furrow off cell center. Since the predominant mechanism for cleavage furrow positioning originates from the mitotic spindle, spindle mispositioning or the generation of spindle asymmetry causes cleavage furrow formation off cell center. Alternatively, the dynamic behavior of the cell cortex – regulated through DNA-derived, spindle- dependent or polarity cues – can result in unequal cortical expansion to create different sized siblings. Naturally, these mechanisms can be applied in different combinations depending on developmental context and cell type. Here, we propose to use Drosophila larval neuroblasts to investigate molecular mechanisms regulating the dynamic behavior of the cell cortex during asymmetric cell division. Drosophila neuroblasts are neural stem cells in the fly, dividing asymmetrically by size and fate. We will use this model system to investigate how cell intrinsic polarity cues, acting in coordination with the cell cycle, control the localization and activity of actomyosin regulators to establish physical asymmetric cell division. We will also investigate how mechanical feedback loops influence spindle geometry and thus cleavage furrow positioning cues. We have implemented and developed a suite of novel and innovative tools to study these aspects in a developmental context in vivo. For instance, we are taking advantage of Drosophila’s superb genetic tractability and amenability for live cell imaging not available in other in vivo systems. We further utilize optogenetic approaches to manipulate the cell cortex with high spatiotemporal control. Our long-term goal is to understand the molecular, cellular and biophysical mechanisms underlying the generation of sibling cell size asymmetry. The respective size of sibling cells underlies stringent developmental control and has been implicated to regulate cell behavior and fate. Since sibling cell size asymmetry is – and involved components are – evolutionary conserved, this proposal will guide future studies in other phyla. The proposed research is also medically significant; several of the molecules under investigation have been implicated in cancer and investigating how sibling cell size asymmetry contributes to brain development is important to understand neurodevelopmental disorders such as microcephaly. This proposal will also have a strong impact in other fields. Tissue morphogenesis, organogenesis and stem cell behavior all depend on the correct spatiotemporal regulation of the cell cortex. Our research in conjunction with the tools and approaches we are developing will put us in a strong position to significantly contribute towards a mechanistic understanding of cortex-driven cell morphogenesis.
项目摘要/摘要 人体含有约3.72 × 1013个细胞和200种不同的细胞类型。生成正确数量的 细胞和足够的专门细胞对于构建功能器官和组织至关重要。如何发展 生物体产生和维持具有专门功能和命运的细胞是一个基本问题, 生物学 不对称细胞分裂是一种进化上保守的机制,可以产生具有不同遗传特性的姐妹细胞。 命运细胞命运的差异可以通过形成大小不等的兄弟姐妹来实现。这种形式的 不对称细胞分裂--这里也称为身体不对称--是发育控制的, 几种后生动物细胞类型主动诱导同胞细胞大小不对称或阻止同胞细胞的形成。 细胞大小不同。 物理不对称细胞分裂可以通过将分裂沟定位在细胞中心之外来诱导。 由于卵裂沟定位的主要机制来自有丝分裂纺锤体, 纺锤体错位或纺锤体不对称的产生导致细胞外卵裂沟的形成 中心或者,细胞皮质的动态行为-通过DNA衍生的,纺锤体- 依赖性或极性线索-可以导致不平等的皮质扩张,以创建不同大小的兄弟姐妹。 当然,这些机制可以根据发展背景以不同的组合应用 细胞类型。 在这里,我们建议使用果蝇幼虫成神经细胞来研究分子机制 调节细胞不对称分裂期间细胞皮质的动态行为。果蝇成神经细胞 是果蝇中的神经干细胞,根据大小和命运不对称地分裂。我们将使用这个模型系统来 研究细胞内在极性线索如何与细胞周期协调作用,控制定位 和肌动球蛋白调节剂的活性来建立物理不对称细胞分裂。我们亦会研究 机械反馈回路如何影响纺锤体几何形状,从而影响卵裂沟定位线索。我们 我已经实施并开发了一套新颖的创新工具,以研究这些方面, 体内的发育背景。例如,我们正在利用果蝇极好的遗传 对于活细胞成像的易处理性和顺从性在其他体内系统中是不可用的。我们进一步利用 光遗传学方法来操纵具有高度时空控制的细胞皮层。 我们的长期目标是了解潜在的分子,细胞和生物物理机制 兄弟细胞大小不对称的产生。兄弟细胞的各自大小是严格 发育控制,并涉及调节细胞行为和命运。由于兄弟像元大小 不对称性是进化保守的,相关成分也是进化保守的,该提议将指导未来 其他phyla的研究。这项拟议中的研究在医学上也很重要; 研究已经涉及癌症和研究同胞细胞大小不对称如何促成 对于理解像小头畸形这样的神经发育障碍很重要。 这一建议也将对其他领域产生重大影响。组织形态发生,器官发生 和干细胞的行为都依赖于细胞皮层的正确时空调节。我们的研究 结合我们正在开发的工具和方法,将使我们处于有利地位, 对皮层驱动细胞形态发生的机制理解有重要贡献。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical regulation of cell size, fate, and behavior during asymmetric cell division.
  • DOI:
    10.1016/j.ceb.2020.07.002
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Delgado MK;Cabernard C
  • 通讯作者:
    Cabernard C
Engineered kinases as a tool for phosphorylation of selected targets in vivo.
In Vivo Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M.
通过有效与gfp兼容的可兼容的照片开关试剂SBTUBA4P和SBTUB2M,微管动力学和完整性,迁移和有丝分裂的体内感光控制。
  • DOI:
    10.1021/jacs.2c01020
  • 发表时间:
    2022-03-30
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Gao L;Meiring JCM;Varady A;Ruider IE;Heise C;Wranik M;Velasco CD;Taylor JA;Terni B;Weinert T;Standfuss J;Cabernard CC;Llobet A;Steinmetz MO;Bausch AR;Distel M;Thorn-Seshold J;Akhmanova A;Thorn-Seshold O
  • 通讯作者:
    Thorn-Seshold O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clemens C Cabernard其他文献

Clemens C Cabernard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clemens C Cabernard', 18)}}的其他基金

Cell and mechanobiology of Asymmetric Cell Division
不对称细胞分裂的细胞和力学生物学
  • 批准号:
    10550034
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了