Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
基本信息
- 批准号:10311996
- 负责人:
- 金额:$ 35.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-25 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATM activationAddressAffectApplications GrantsBRCA1 geneBiological ProcessCamptothecinCancer PatientCell LineCell SurvivalCell physiologyCellsComplexDNADNA DamageDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA damage checkpointDNA lesionDNA-dependent protein kinaseDataDefectDouble Strand Break RepairEnsureExcisionExhibitsFoundationsGene ProteinsGenomeGenomic InstabilityGoalsHumanHypersensitivityImpairmentKnock-outLaboratoriesLibrariesMaintenanceMediatingMolecularMusNBS1 genePathway interactionsPhosphorylationPlayPoisonProcessProteinsProteomicsResearch PersonnelRoleS phaseSeriesSignal PathwaySignal TransductionSiteTestingType I DNA TopoisomerasesWorkataxia telangiectasia mutated proteincancer preventioncancer therapygenome integrityhomologous recombinationin vivoinhibitornucleasep53-binding protein 1precision oncologyprotein functionrecombinational repairrecruitrepairedresponsesensortumorigenesiswhole genome
项目摘要
Project Summary
Deciphering the molecular mechanisms underlying genomic instability and tumorigenesis is the long-term
goal of my laboratory. The broad objective, of this proposal, reflects our pursuit to gain a comprehensive
understanding of the network involved in DNA repair and to determine how these proteins and pathways
intersect, interact, communicate, coordinate, and collaborate for genome maintenance. The short-term goal is
to perform detailed mechanistic studies of several DNA damage signaling and repair pathways, which will
provide the foundation to achieve our long-term goal of exploiting DNA repair network for cancer therapy.
This proposal will define two overlapping DNA damage-signaling pathways that together are essential for
cell survival. We and other researchers have constructed an elaborate signaling pathway that acts downstream
of H2AX and regulates the recruitment and accumulation of many DNA damage repair proteins at sites of DNA
breaks. This H2AX-dependent pathway is composed of H2AX, MDC1, RNF8, and RNF168. However, repair
defects observed in H2AX-, MDC1-, RNF8-, or RNF168-deficient cells or mice are mild, raising the possibility
that there is an H2AX-independent mechanism involved in the recruitment of these downstream repair
proteins. We propose that this H2AX-independent pathway is controlled by NBS1.
On the basis of our previous studies and preliminary data presented in this proposal, we hypothesize that
the H2AX- and NBS1-dependent pathways are involved in the DNA damage response and are critical for cell
survival. We believe that these two pathways have redundant functions, especially in promoting homologous
recombination repair. However, they are not completely separate, since they intersect at multiple points. This
makes it considerably challenging for us to delineate the functions of these two redundant pathways. It is
unknown whether we can elucidate the contribution of a single pathway to the ever-growing network, i.e., can
we untangle the network to understand the mechanisms by which different pathways intersect and contribute
to biological processes? We will address this question in this application and we will further study the
mechanisms by which the H2AX- and NBS1-dependent pathways act together to ensure cell survival and the
completion of DNA repair. We propose the following specific aims: 1) determine whether NBS1 acts
redundantly with the established H2AX-MDC1-RNF8-RNF168 pathway to ensure cell survival; 2) delineate the
NBS1-dependent pathway; and 3) explore the mechanisms underlying cell lethality caused by NBS1 and H2AX
co-depletion. These studies will not only allow us to understand the redundant functions of H2AX and NBS1 in
vivo but will also reveal ways to investigate the functions of proteins and pathways in today’s complex signaling
networks. Moreover, results from these studies will provide the rationale for exploiting DNA repair defect and
applying synthetic lethality concept in precision medicine for cancer patients.
项目概要
破译基因组不稳定性和肿瘤发生背后的分子机制是长期的任务
我实验室的目标。该提案的总体目标反映了我们对获得全面的
了解参与 DNA 修复的网络并确定这些蛋白质和途径如何
交叉、相互作用、沟通、协调和协作以进行基因组维护。短期目标是
对几种 DNA 损伤信号传导和修复途径进行详细的机制研究,这将
为实现我们利用 DNA 修复网络进行癌症治疗的长期目标奠定了基础。
该提案将定义两条重叠的 DNA 损伤信号通路,它们共同对于
细胞存活。我们和其他研究人员构建了一条作用于下游的精心设计的信号通路
H2AX 并调节 DNA 位点上许多 DNA 损伤修复蛋白的招募和积累
休息。该 H2AX 依赖性途径由 H2AX、MDC1、RNF8 和 RNF168 组成。不过,修复
在 H2AX、MDC1、RNF8 或 RNF168 缺陷细胞或小鼠中观察到的缺陷很轻微,这增加了可能性
存在一种独立于 H2AX 的机制参与这些下游修复的招募
蛋白质。我们认为这条 H2AX 独立途径受 NBS1 控制。
根据我们之前的研究和本提案中提供的初步数据,我们假设
H2AX 和 NBS1 依赖性途径参与 DNA 损伤反应,对细胞至关重要
生存。我们认为这两条途径具有冗余功能,特别是在促进同源性方面
重组修复。然而,它们并不是完全分开的,因为它们在多个点相交。这
描述这两条冗余路径的功能对我们来说是相当具有挑战性的。这是
未知我们是否可以阐明单一路径对不断增长的网络的贡献,即
我们解开网络以了解不同路径交叉和贡献的机制
生物过程?我们将在本申请中解决这个问题,并进一步研究
H2AX 和 NBS1 依赖性途径共同作用以确保细胞存活和
完成DNA修复。我们提出以下具体目标:1)确定NBS1是否起作用
与已建立的H2AX-MDC1-RNF8-RNF168通路冗余,以确保细胞存活; 2) 划定
NBS1依赖途径; 3)探索NBS1和H2AX引起细胞致死的机制
共同耗尽。这些研究不仅能让我们了解 H2AX 和 NBS1 在
体内,还将揭示研究蛋白质功能和当今复杂信号传导途径的方法
网络。此外,这些研究的结果将为利用 DNA 修复缺陷和
将合成致死概念应用于癌症患者的精准医疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junjie Chen其他文献
Junjie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junjie Chen', 18)}}的其他基金
Deciphering pathways involved in topoisomerase II turnover
破译拓扑异构酶 II 周转涉及的途径
- 批准号:
10552113 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Elucidating mechanisms underlying replication checkpoint control
阐明复制检查点控制的底层机制
- 批准号:
10620981 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Exploring DNA damage response pathways as targets for cancer therapy
探索 DNA 损伤反应途径作为癌症治疗的目标
- 批准号:
10515484 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
Project 4: Coordinating Nucleolytic Pathways During Crosslink Repair
项目 4:在交联修复过程中协调溶核途径
- 批准号:
9148677 - 财政年份:2017
- 资助金额:
$ 35.87万 - 项目类别:
Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
- 批准号:
9206732 - 财政年份:2017
- 资助金额:
$ 35.87万 - 项目类别:
Define redundant functions of H2AX and NBS1 in DNA repair
定义DNA修复中H2AX和NBS1的冗余功能
- 批准号:
10053713 - 财政年份:2017
- 资助金额:
$ 35.87万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Research Grant














{{item.name}}会员




